首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hartsel SC  Weiland TR 《Biochemistry》2003,42(20):6228-6233
The membrane-active antifungal agent amphotericin B (AmB) is one of the few agents shown to slow the course of prion diseases in animals. Congo Red and other small molecules have been reported to directly inhibit amyloidogenesis in both prion and Alzheimer peptide model systems via specific binding. We propose that it is possible that AmB may act similarly to physically prevent conversion of the largely alpha-helical prion protein (PrP) to the pathological beta-sheet aggregate protease-resistant isoform (PrP(res)) in prion disease and by analogy prevent fibrillization in amyloid diseases. To assess whether AmB is capable of binding specifically to amyloid fibrils as does Congo Red, we have used the insulin fibril and Abeta 25-35 amyloid model fibril system. We find that AmB does bind strongly to both insulin (K(d) = 1.1 microM) and Abeta 25-35 amyloid (K(d) = 6.4 microM) fibrils but not to native insulin. Binding is characterized by a red-shifted AmB spectrum indicative of a more hydrophobic environment. Thus AmB seems to have a complementary face for amyloid fibrils but not the native protein. In addition, AmB interacts specifically with Congo Red, a known fibril-binding agent. In kinetic fibril formation studies, AmB was able to significantly kinetically delay the formation of Abeta 25-35 fibrils at pH 7.4 but not insulin fibrils at pH 2.  相似文献   

2.
Ma Q  Fan JB  Zhou Z  Zhou BR  Meng SR  Hu JY  Chen J  Liang Y 《PloS one》2012,7(4):e36288

Background

Amyloid fibrils associated with neurodegenerative diseases can be considered biologically relevant failures of cellular quality control mechanisms. It is known that in vivo human Tau protein, human prion protein, and human copper, zinc superoxide dismutase (SOD1) have the tendency to form fibril deposits in a variety of tissues and they are associated with different neurodegenerative diseases, while rabbit prion protein and hen egg white lysozyme do not readily form fibrils and are unlikely to cause neurodegenerative diseases. In this study, we have investigated the contrasting effect of macromolecular crowding on fibril formation of different proteins.

Methodology/Principal Findings

As revealed by assays based on thioflavin T binding and turbidity, human Tau fragments, when phosphorylated by glycogen synthase kinase-3β, do not form filaments in the absence of a crowding agent but do form fibrils in the presence of a crowding agent, and the presence of a strong crowding agent dramatically promotes amyloid fibril formation of human prion protein and its two pathogenic mutants E196K and D178N. Such an enhancing effect of macromolecular crowding on fibril formation is also observed for a pathological human SOD1 mutant A4V. On the other hand, rabbit prion protein and hen lysozyme do not form amyloid fibrils when a crowding agent at 300 g/l is used but do form fibrils in the absence of a crowding agent. Furthermore, aggregation of these two proteins is remarkably inhibited by Ficoll 70 and dextran 70 at 200 g/l.

Conclusions/Significance

We suggest that proteins associated with neurodegenerative diseases are more likely to form amyloid fibrils under crowded conditions than in dilute solutions. By contrast, some of the proteins that are not neurodegenerative disease-associated are unlikely to misfold in crowded physiological environments. A possible explanation for the contrasting effect of macromolecular crowding on these two sets of proteins (amyloidogenic proteins and non-amyloidogenic proteins) has been proposed.  相似文献   

3.
Thakur AK  Rao ChM 《PloS one》2008,3(7):e2688
Amyloid fibril formation involves three steps; structural perturbation, nucleation and elongation. We have investigated amyloidogenesis using prion protein as a model system and UV-light as a structural perturbant. We find that UV-exposed prion protein fails to form amyloid fibrils. Interestingly, if provided with pre-formed fibrils as seeds, UV-exposed prion protein formed amyloid fibrils albeit with slightly different morphology. Atomic force microscopy and electron microscopic studies clearly show the formation of fibrils under these conditions. Circular dichroism study shows loss in helicity in UV-exposed protein. UV-exposed prion protein fails to form amyloid fibrils. However, it remains competent for fibril extension, suggesting that UV-exposure results in loss of nucleating capability. This work opens up possibility of segregating nucleation and elongation step of amyloidogenesis, facilitating screening of new drug candidates for specifically inhibiting either of these processes. In addition, the work also highlights the importance of light-induced structural and functional alterations which are important in protein based therapeutics.  相似文献   

4.
Understanding how structure develops during the course of amyloid fibril formation by the prion protein is important for understanding prion diseases. Determining how conformational heterogeneity manifests itself in the fibrillar and pre-fibrillar amyloid aggregates is critical for understanding prion strain phenotypes. In this study, the formation of worm-like amyloid fibrils by the mouse prion protein has been characterized structurally by hydrogen-deuterium exchange coupled to mass spectrometry. The structural cores of these fibrils and of the oligomer on the direct pathway of amyloid fibril formation have been defined, showing how structure develops during fibril formation. The structural core of the oligomer not on the direct pathway has also been defined, allowing the delineation of the structural features that make this off-pathway oligomer incompetent to directly form fibrils. Sequence segments that exhibit multiple local conformations in the three amyloid aggregates have been identified, and the development of structural heterogeneity during fibril formation has been characterized. It is shown that conformational heterogeneity is not restricted to only the C-terminal domain region, which forms the structural core of the aggregates; it manifests itself in the N-terminal domain of the protein as well. Importantly, all three amyloid aggregates are shown to be capable of disrupting lipid membrane structure, pointing to a mechanism by which they may be toxic.  相似文献   

5.
Amyloid fibril formation is associated with several pathologies, including Alzheimer's disease, Parkinson's disease, type II diabetes, and prion diseases. Recently, a relationship between basement membrane components and amyloid deposits has been reported. The basement membrane protein, laminin, may be involved in amyloid-related diseases, since laminin is present in amyloid plaques in Alzheimer's disease and binds to amyloid precursor protein. Recently, we showed that peptide A208 (AASIKVAVSADR), the IKVAV-containing peptide, formed amyloid-like fibrils. We previously identified 60 cell adhesive sequences in laminin-1 using a total of 673 12-mer synthetic peptides. Here, we screened for additional amyloidogenic sequences among 60 cell adhesive peptides derived from laminin-1. We first examined amyloid-like fibril formation by the 60 active peptides with Congo red, a histological dye binding to many amyloid-like proteins. Thirteen peptides were stained with Congo red. Four of the 13 peptides promoted cell attachment and neurite outgrowth like the IKVAV-containing peptide. The four peptides also showed amyloid-like fibril formation in both X-ray diffraction and electron microscopic analyses. The amyloidogenic peptides contain consensus amino acid components, including both basic and acidic amino acids and Ser and Ile residues. These results indicate that at least five laminin-derived peptides can form amyloid-like fibrils. We conclude that the laminin-derived amyloidogenic peptides have the potential to form amyloid-like fibrils in vivo, possibly when laminin-1 is degraded.  相似文献   

6.
Luo JC  Wang SC  Jian WB  Chen CH  Tang JL  Lee CI 《FEBS letters》2012,586(6):680-685
Fibril formation has been considered a significant feature of amyloid proteins. However, it has been proposed that fibril formation is a common property of many proteins under appropriate conditions. We studied the fibril formation of β-amylase, a non-amyloid protein rich in α-helical structure, because the secondary structure of β-amylase is similar to that of prions. With the conditions for the fibril formation of prions, β-amylase proteins were converted into amyloid fibrils. The features of β-amylase proteins and fibrils are compared to prion proteins and fibrils. Furthermore, the cause of neurotoxicity in amyloid diseases is discussed.  相似文献   

7.
The full-length mouse prion protein, moPrP, is shown to form worm-like amyloid fibrils at pH 2 in the presence of 0.15 M NaCl, in a slow process that is accelerated at higher temperatures. Upon reduction in pH to 2, native moPrP transforms into a mixture of soluble β-rich oligomers and α-rich monomers, which exist in a slow, concentration-dependent equilibrium with each other. It is shown that only the β-rich oligomers and not the α-rich monomers, can form worm-like amyloid fibrils. The mechanism of formation of the worm-like amyloid fibrils from the β-rich oligomers has been studied with four different physical probes over a range of temperatures and over a range of protein concentrations. The observed rate of fibrillation is the same, whether measured by changes in ellipticity at 216 nm, in thioflavin fluorescence upon binding, or in the mean hydrodynamic radius. The observed rate is significantly slower when monitored by total scattering intensity, suggesting that lateral association of the worm-like fibrils occurs after they form. The activation energy for worm-like fibril formation was determined to be 129 kJ/mol. The observed rate of fibrillation increases with an increase in protein concentration, but saturates at protein concentrations above 50 μM. The dependence of the observed rate of fibrillation on protein concentration suggests that aggregate growth is rate-limiting at low protein concentration and that conformational change, which is independent of protein concentration, becomes rate-limiting at higher protein concentrations. Hence, fibril formation by moPrP occurs in at least two separate steps. Longer but fewer worm-like fibrils are seen to form at low protein concentration, and shorter but more worm-like fibrils are seen to form at higher protein concentrations. This observation suggests that the β-rich oligomers grow progressively in size to form critical higher order-oligomers from which the worm-like amyloid fibrils then form.  相似文献   

8.
A molecular understanding of prion diseases requires an understanding of the mechanism of amyloid fibril formation by the prion protein. In particular, it is necessary to define the sequence of the structural events describing the conformational conversion of monomeric PrP to aggregated PrP. In this study, the sequence of the structural events in the case of amyloid fibril formation by recombinant mouse prion protein at pH 7 has been characterized by hydrogen–deuterium exchange and mass spectrometry. The observation that fibrils are substantially more stable to hydrogen–deuterium exchange than is native monomer allows both forms to be quantified during the course of the aggregation reaction. Under the aggregation conditions utilized, native monomeric protein and amyloid fibrils are the only forms of the protein detectable during the course of the fibril formation reaction, suggesting that monomer directly adds on to the fibril template. Conformational conversion is shown to occur in two steps after the binding of monomer to fibril, with helix 1 unfolding only after helices 2 and 3 transform into β-sheet. Local stability in the β-sheet core region (residues ~ 159–225) of the fibrils is shown to be sequence dependent in that it varies along the length of the core, and local stability in protein molecules that are ordered in the structurally heterogeneous sequence segment 109–132 is shown to be similar to that in the core. This new understanding of the structural events during prion protein aggregation has important bearing on our comprehension of the molecular basis of prion pathogenesis.  相似文献   

9.
A key molecular event in prion diseases is the conversion of the prion protein (PrP) from its normal cellular form (PrPC) to the disease-specific form (PrPSc). The transition from PrPC to PrPSc involves a major conformational change, resulting in amorphous protein aggregates and fibrillar amyloid deposits with increased beta-sheet structure. Using recombinant PrP refolded into a beta-sheet-rich form (beta-PrP) we have studied the fibrillization of beta-PrP both in solution and in association with raft membranes. In low ionic strength thick dense fibrils form large networks, which coexist with amorphous aggregates. High ionic strength results in less compact fibrils, that assemble in large sheets packed with globular PrP particles, resembling diffuse aggregates found in ex vivo preparations of PrPSc. Here we report on the finding of a beta-turn-rich conformation involved in prion fibrillization that is toxic to neuronal cells in culture. This is the first account of an intermediate in prion fibril formation that is toxic to neuronal cells. We propose that this unusual beta-turn-rich form of PrP may be a precursor of PrPSc and a candidate for the neurotoxic molecule in prion pathogenesis.  相似文献   

10.

Background

It is known that in vivo human prion protein (PrP) have the tendency to form fibril deposits and are associated with infectious fatal prion diseases, while the rabbit PrP does not readily form fibrils and is unlikely to cause prion diseases. Although we have previously demonstrated that amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and macromolecular crowding has different effects on fibril formation of the rabbit/human PrPs, we do not know which domains of PrPs cause such differences. In this study, we have constructed two PrP chimeras, rabbit chimera and human chimera, and investigated how domain replacement affects fibril formation of the rabbit/human PrPs.

Methodology/Principal Findings

As revealed by thioflavin T binding assays and Sarkosyl-soluble SDS-PAGE, the presence of a strong crowding agent dramatically promotes fibril formation of both chimeras. As evidenced by circular dichroism, Fourier transform infrared spectroscopy, and proteinase K digestion assays, amyloid fibrils formed by human chimera have secondary structures and proteinase K-resistant features similar to those formed by the human PrP. However, amyloid fibrils formed by rabbit chimera have proteinase K-resistant features and secondary structures in crowded physiological environments different from those formed by the rabbit PrP, and secondary structures in dilute solutions similar to the rabbit PrP. The results from transmission electron microscopy show that macromolecular crowding caused human chimera but not rabbit chimera to form short fibrils and non-fibrillar particles.

Conclusions/Significance

We demonstrate for the first time that the domains beyond PrP-H2H3 (β-strand 1, α-helix 1, and β-strand 2) have a remarkable effect on fibrillization of the rabbit PrP but almost no effect on the human PrP. Our findings can help to explain why amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and why macromolecular crowding has different effects on fibrillization of PrPs from different species.  相似文献   

11.
12.
13.
We have revisited the well-studied heat and acidic amyloid fibril formation pathway (pH 1.6, 65 degrees C) of hen egg-white lysozyme (HEWL) to map the barriers of the misfolding and amyloidogenesis pathways. A comprehensive kinetic mechanism is presented where all steps involving protein hydrolysis, fragmentation, assembly and conversion into amyloid fibrils are accounted for. Amyloid fibril formation of lysozyme has multiple kinetic barriers. First, HEWL unfolds within minutes, followed by irreversible steps of partial acid hydrolysis affording a large amount of nicked HEWL, the 49-101 amyloidogenic fragment and a variety of other species over 5-40 h. Fragmentation forming the 49-101 fragment is a requirement for efficient amyloid fibril formation, indicating that it forms the rate-determining nucleus. Nicked full-length HEWL is recruited efficiently into amyloid fibrils in the fibril growth phase or using mature fibrils as seeds, which abolished the lag phase completely. Mature amyloid fibrils of HEWL are composed mainly of nicked HEWL in the early equilibrium phase but go through a "fibril shaving" process, affording fibrils composed of the 49-101 fragment and 53-101 fragment during more extensive maturation (incubation for longer than ten days). Seeding of the amyloid fibril formation process using sonicated mature amyloid fibrils accelerates the fibril formation process efficiently; however, addition of intact full-length lysozyme at the end of the lag phase slows the rate of amyloidogenesis. The intact full-length protein, in contrast to nicked lysozyme, slows fibril formation due to its slow conversion into the amyloid fold, probably due to inclusion of the non-amyloidogenic 1-48/102-129 portion of HEWL in the fibrils, which can function as a "molecular bumper" stalling further growth.  相似文献   

14.
The problem of amyloidoses is pressing and have recently attracted special attention throughout the world because of epidemics of prion diseases such as mad cow disease and human Creutzfeldt-Jacob disease. These diseases result from the conversion of a native protein or peptide into a highly stable pathological form. Molecules having a pathological conformation aggregate to form amyloid fibrils, capable of unlimited growth. It is important to study the molecular mechanisms of prion diseases and to identify the protein regions responsible for their development. The review considers theoretical and experimental works focusing on the formation of amyloid fibrils.  相似文献   

15.
Amyloid proteins and peptides comprise a diverse group of molecules that vary both in size and amino-acid sequence, yet assemble into amyloid fibrils that have a common core structure. Kinetic studies of amyloid fibrillogenesis have revealed that certain amyloid proteins form oligomeric intermediates prior to fibril formation. We have investigated fibril formation with a peptide corresponding to residues 195-213 of the human prion protein. Through a combination of kinetic and equilibrium studies, we have found that the fibrillogenesis of this peptide proceeds as an all-or-none reaction where oligomeric intermediates are not stably populated. This variation in whether oligomeric intermediates are stably populated during fibril formation indicates that amyloid proteins assemble into a common fibrillar structure; however, they do so through different pathways.  相似文献   

16.
Ecroyd H  Carver JA 《IUBMB life》2008,60(12):769-774
This mini-review focuses on the processes and consequences of protein folding and misfolding. The latter process often leads to protein aggregation and precipitation with the aggregates adopting either highly ordered (amyloid fibril) or disordered (amorphous) forms. In particular, the amyloid fibril is discussed because this form has gained considerable notoriety due to its close links to a variety of debilitating diseases including Alzheimer's, Parkinson's, Huntington's, and Creutzfeldt-Jakob diseases, and type-II diabetes. In each of these diseases a different protein forms fibrils, yet the fibrils formed have a very similar structure. The mechanism by which fibrils form, fibril structure, and the cytotoxicity associated with fibril formation are discussed. The generic nature of amyloid fibril structure suggests that a common target may be accessible to treat amyloid fibril-associated diseases. As such, the ability of some molecules, for example, the small heat-shock family of molecular chaperone proteins, to inhibit fibril formation is of interest due to their therapeutic potential.  相似文献   

17.
Autocatalytic cleavage of lithostathine leads to the formation of quadruple-helical fibrils (QHF-litho) that are present in Alzheimer's disease. Here we show that such fibrils also occur in Creutzfeldt-Jakob and Gerstmann-Str?ussler-Scheinker diseases, where they form protease-K-resistant deposits and co-localize with amyloid plaques formed from prion protein. Lithostathine does not appear to change its native-like, globular structure during fibril formation. However, we obtained evidence that a cluster of six conserved tryptophans, positioned around a surface loop, could act as a mobile structural element that can be swapped between adjacent protein molecules, thereby enabling the formation of higher order fibril bundles. Despite their association with these clinical amyloid deposits, QHF-litho differ from typical amyloid fibrils in several ways, for example they produce a different infrared spectrum and cannot bind Congo Red, suggesting that they may not represent amyloid structures themselves. Instead, we suggest that lithostathine constitutes a novel component decorating disease-associated amyloid fibrils. Interestingly, [6,6']bibenzothiazolyl-2,2'-diamine, an agent found previously to disrupt aggregates of huntingtin associated with Huntington's disease, can dissociate lithostathine bundles into individual protofilaments. Disrupting QHF-litho fibrils could therefore represent a novel therapeutic strategy to combat clinical amyloidoses.  相似文献   

18.
Phase diagrams describing fibrillization by polyalanine peptides   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

19.
The formation of amyloid plaques is a key pathological event in neurodegenerative disorders, such as prion and Alzheimer's diseases. Dendrimers are considered promising therapeutic agents in these disorders. In the present work, we have studied the effect of polypropyleneimine dendrimers on the formation of amyloid fibrils as a function of pH in order to gain further insight in the aggregation mechanism and its inhibition. Amyloid fibrils from prion peptide PrP 185-208 and Alzheimer's peptide Abeta 1-28 were produced in vitro, and their formation was monitored using the dye thioflavin T (ThT). The results showed that the level of protonation of His, Glu, and Asp residues is important for the final effect, especially at low dendrimer concentration when their inhibiting capacity depends on the pH. At the highest concentrations, dendrimers were very effective against fibril formations for both prion and Alzheimer's peptides.  相似文献   

20.
Prion protein is known to have the ability to adopt a pathogenic conformation, which seems to be the basis for protein-only infectivity. The infectivity is based on self-replication of this pathogenic prion structure. One of possible mechanisms for such replication is the elongation of amyloid-like fibrils.We measured elongation kinetics and thermodynamics of mouse prion amyloid-like fibrils at different guanidine hydrochloride (GuHCl) concentrations. Our data show that both increases in temperature and GuHCl concentration help unfold monomeric protein and thus accelerate elongation. Once the monomers are unfolded, further increases in temperature raise the rate of elongation, whereas the addition of GuHCl decreases it.We demonstrated a possible way to determine different activation energies of amyloid-like fibril elongation by using folded and unfolded protein molecules. This approach separates thermodynamic data for fibril-assisted monomer unfolding and for refolding and formation of amyloid-like structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号