首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolation and characterization of thrombomodulin from human placenta   总被引:18,自引:0,他引:18  
Protein C, a plasma protein, is activated by thrombin to a protease (protein Ca) that functions as a physiological anticoagulant. We have isolated thrombomodulin, a cofactor required for the rapid activation of protein C, from human placenta. The purification to near homogeneity was achieved using a crude Triton-solubilized protein fraction from a placental particulate fraction as starting material. Chromatography on DEAE-Sepharose removed 95% of the protein and achieved a 3-fold purification. Thrombomodulin was then isolated by affinity chromatography on a column of thrombin-Sepharose wherein the thrombin had been previously inactivated with diisopropyl fluorophosphate. The final preparation was purified 7,900-fold over the membrane extract with a yield of 7%. We obtained 0.88 mg of thrombomodulin from 100 g of membrane extract derived from 5 kg of placenta. The protein was nearly homogeneous as judged by electrophoresis on 10% acrylamide sodium dodecyl sulfate gels in the presence of 2-mercaptoethanol with an apparent Mr = 105,000. Western blot analysis without 2-mercaptoethanol gave an apparent Mr = 75,000. The protein stimulated the rate of protein C activation by thrombin 800-fold to 10 mol of Ca formed/min/mol of thrombin. Thrombin and thrombomodulin appear to form a 1:1 stoichiometric complex as judged from experiments where we measured the effect of varying the concentration of thrombomodulin with respect to thrombin and the converse, on rates of protein C activation. An antibody directed against rabbit lung thrombomodulin inhibited the human placenta protein by 66%, and the amino acid composition of the proteins from the two species was similar indicating that the proteins are closely related. The apparent Michaelis constant of the thrombin-thrombomodulin complex for protein C is 9.8 microM. The protein C activation reaction requires calcium ions and is maximal at 1 mM Ca2+; higher concentrations inhibited the reaction. Coagulation factor Va and factor Va light chain both stimulate the activity of human thrombomodulin 2- to 3-fold.  相似文献   

2.
Thrombin Glu-39 restricts the P'3 specificity to nonacidic residues   总被引:6,自引:0,他引:6  
Residue 39 of serine proteases neighbors positions P'2 to P'4 of the substrate. When Glu-39 of thrombin is replaced with Lys, the resultant enzyme (E39K) retains similar P1, P2, and P3 specificities but has altered P'3 and/or P'4 specificities. These conclusions are based on analysis of both p-nitroanilide and synthetic peptide hydrolysis. The activity of E39K is nearly normal toward 17 p-nitroanilide substrates. In peptide substrates, an acidic residue at either the P3 or P'3 position reduces the rate of cleavage by thrombin. A single substitution of Asp with Gly in either the P3 or P'3 position of a peptide corresponding to the P7-P'5 residues of protein C increases the rate of cleavage by thrombin 2-3-fold. Replacement of both Asp residues with Gly increases the rate of cleavage 30-fold. With E39K, the inhibitory effect of Asp in P3 remains unchanged, but Asp in the P'3 site is no longer inhibitory. Significant differences in the catalytic activity of E39K are also seen with respect to protein C activation. In the absence of thrombomodulin, E39K activates protein C 2.2 times faster than thrombin. In the presence of thrombomodulin, the rate of protein C activation is similar for E39K and thrombin. The second order rate constant of inhibition by antithrombin III, where P'4 is a Glu, is slightly increased (1.4-fold). The clotting activity is reduced 2.4-fold due to a lower rate of fibrinopeptides A and B release where P'3 is Arg. These data show that the P'3 position is a determinant of thrombin specificity and suggest that thrombomodulin may function in part by alleviating the inhibitory effects that may arise from the proximity of the Asp in P'3 of protein C with Glu-39 of thrombin.  相似文献   

3.
Functionally active thrombomodulin is present in human platelets   总被引:8,自引:0,他引:8  
We found functionally active thrombomodulin in human platelets (60 +/- 18 molecules per platelet). Protein C appeared not to be activated by thrombin with gel-filtered platelets. However, the activation of protein C by thrombin was accelerated by thrombin-stimulated and washed platelets. This cofactor activity of the platelets was neutralized by the anti-lung thrombomodulin-F(ab')2. From the Triton X-extract of platelets, thrombomodulin was partially purified by diisopropylphosphoryl-thrombin-agarose affinity chromatography. The Mr of the predominant platelet thrombomodulin was 78,000 before and 109,000 after reduction on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, values identical to those of placental thrombomodulin. The specific activity of the cofactor activity, apparent Kd (0.4 nM) for thrombin and Km (0.67 microM) for protein C of platelet thrombomodulin were also identical to those of placenta thrombomodulin. Thrombomodulin may play a role in activation of protein C on the surface of platelets.  相似文献   

4.
We have prepared a monoclonal antibody directed against human thrombomodulin. We used the antibody to measure thrombomodulin molecules in cultured human endothelial cells from umbilical vein and in a human lung cancer cell line (A549). Endothelial cells contain approximately 30,000-55,000 molecules of thrombomodulin/cell while the A549 cell has about 1/4 of this number. About 50-60% of thrombin binding sites on endothelial cells are thrombomodulin, while about 90% of thrombin binding sites on A549 cells are thrombomodulin. Exposure of these cells to thrombin decreased thrombomodulin on the cell surface suggesting that internalization of thrombin-thrombomodulin occurred. The internalized 125I-thrombin was degraded in the cells and thrombomodulin reappeared on the cell surface after 30 min, suggesting the recycling of thrombomodulin. The rate of protein C activation correlated with the presence of the thrombin-thrombomodulin complex on the cell surface. The binding of thrombin to cell-surface thrombomodulin accelerates protein C activation; the subsequent internalization of the thrombin-thrombomodulin complex is associated with cessation of protein C activation. Therefore, endocytosis of thrombin-thrombomodulin may serve to control protein C activation. The uptake and degradation of thrombin bound to thrombomodulin may provide a mechanism for clearance of thrombin from the circulation.  相似文献   

5.
Protein C activation is catalyzed on endothelium by a complex between thrombin and thrombomodulin. Ca2+ stimulates protein C activation in the presence, and inhibits in the absence, of thrombomodulin. Protein C has Asp residues at the P3 and P3' positions relative to the scissile bond at Arg169-Leu. To determine the contribution of these residues to the Ca2+ effect on activation, we have expressed human 4-carboxyglutamic acid (Gla)-domainless protein C and 3 mutants with Asp-->Gly substitutions at P3, P3', and both positions. Ca2+ interaction with the protein C derivatives was monitored by changes in intrinsic fluorescence, and the Ca2+ dependence of activation by thrombin and a complex of thrombin-thrombomodulin with a soluble thrombomodulin derivative (the fourth through sixth epidermal growth factor domains). The affinity for Ca2+ of the mutants was reduced 3-6-fold, which was reflected by a comparable change in the Ca2+ concentration required for the half-maximal rate of activation by the thrombin-thrombomodulin complex. However, Ca2+ no longer effectively inhibited activation of the mutants by thrombin alone. We conclude that 1) the Asp residues play a specific role in the Ca(2+)-dependent inhibition of protein C activation by thrombin; 2) these mutations alter the affinity of Ca2+ for the high affinity binding site; and 3) the Asp residues in the P3 and P3' sites do not contribute in a positive fashion to rapid activation by the thrombin-thrombomodulin complex.  相似文献   

6.
The interaction of thrombin with protein C triggers a key down-regulatory process of the coagulation cascade. Using a panel of 77 Ala mutants, we have mapped the epitope of thrombin recognizing protein C in the absence or presence of the cofactor thrombomodulin. Residues around the Na(+) site (Thr-172, Lys-224, Tyr-225, and Gly-226), the aryl binding site (Tyr-60a), the primary specificity pocket (Asp-189), and the oxyanion hole (Gly-193) hold most of the favorable contributions to protein C recognition by thrombin, whereas a patch of residues in the 30-loop (Arg-35 and Pro-37) and 60-loop (Phe-60h) regions produces unfavorable contributions to binding. The shape of the epitope changes drastically in the presence of thrombomodulin. The unfavorable contributions to binding disappear and the number of residues promoting the thrombin-protein C interaction is reduced to Tyr-60a and Asp-189. Kinetic studies of protein C activation as a function of temperature reveal that thrombomodulin increases >1,000-fold the rate of diffusion of protein C into the thrombin active site and lowers the activation barrier for this process by 4 kcal/mol. We propose that the mechanism of thrombomodulin action is to kinetically facilitate the productive encounter of thrombin and protein C and to allosterically change the conformation of the activation peptide of protein C for optimal presentation to the thrombin active site.  相似文献   

7.
Thrombomodulin, an endothelial cell-surface anticoagulant, has been postulated to contain a glycosaminoglycan. Thrombomodulin function was therefore studied in endothelial cells treated with beta-D-xyloside, an inhibitor of glycosaminoglycan attachment to proteoglycan core proteins. Beta-D-xyloside caused a reproducible 3 to 5-fold increase in the Km of thrombomodulin for thrombin and a 20-30% decrease in the rate of protein C activation by the thrombin-thrombomodulin complex. These results support a role for glycosaminoglycans in thrombomodulin function and suggest that beta-D-xylosides can be used to investigate both the anticoagulant mechanisms and the biosynthesis of cell-surface thrombomodulin.  相似文献   

8.
Thrombin bound to thrombomodulin activates thrombin-activable fibrinolysis inhibitor (TAFI) and protein C much more efficiently than thrombin alone. Although thrombomodulin has been proposed to alter the thrombin active site, the recently determined structure of the thrombin-thrombomodulin complex does not support this proposal. In this study, the contribution of amino acids near the activation site of TAFI toward thrombomodulin dependence was determined, utilizing four variants of TAFI with specific substitutions in the P6-P'3 region surrounding the Arg-92 cleavage site. Two point mutants had either the Ser-90 or Asp-87 of TAFI replaced with Ala, a third mutant had the thrombin activation site of the fibrinogen Bbeta-chain substituted into positions 91-95 of TAFI, and a fourth mutant had the thrombin activation site of protein C substituted into positions 90-95 of TAFI. Each of these mutants was expressed, purified, and characterized with respect to activation kinetics and functional properties of the enzyme. Even though fibrinogen is poorly cleaved by thrombin-thrombomodulin, the fibrinogen activation site does not significantly alter the thrombomodulin dependence of TAFI activation. The TAFI variant with the protein C activation sequence is only slowly activated by thrombin-thrombomodulin, and not at all by free thrombin. Mutating Asp-87 to Ala increases the catalytic efficiency of activation 3-fold both in the presence and absence of thrombomodulin, whereas mutating Ser-90 to Ala effects only minor kinetic differences compared with wild type TAFI. The thermal stabilities and antifibrinolytic properties of the enzymes were not substantially altered by any of the mutations that allowed for efficient activation of the enzyme. We conclude that residues in the P6-P'3 region of TAFI do not determine the thrombomodulin dependence of activation, which lends support to the argument that the role of thrombomodulin is to optimally orient thrombin and its substrate, rather than to allosterically alter the specificity of the thrombin active site.  相似文献   

9.
The effect of bovine thrombomodulin on the specificity of bovine thrombin   总被引:8,自引:0,他引:8  
Bovine lung thrombomodulin is purified and used to investigate the basis of the change in substrate specificity of bovine thrombin when bound to thrombomodulin. Bovine thrombomodulin is a single polypeptide having an apparent molecular weight of 84,000 and associates with thrombin with high affinity and rapid equilibrium, to act as a potent cofactor for protein C activation and antagonist of reactions of thrombin with fibrinogen, heparin cofactor 2, and hirudin. Bovine thrombomodulin inhibits the clotting activity of thrombin with Kd less than 2.5 nM. Kinetic analysis of the effect of bovine thrombomodulin on fibrinopeptide A hydrolysis by thrombin indicates competitive inhibition with Kis = 0.5 nM. The active site of thrombin is little perturbed by thrombomodulin, as tosyl-Gly-Pro-Arg-p-nitroanilide hydrolysis and inhibition by antithrombin III are unaffected. Insensitivity of the reaction with antithrombin III is likewise observed with thrombin bound to thrombomodulin on intact endothelium. Antithrombin III-heparin, human heparin cofactor 2, and hirudin inhibit thrombin-thrombomodulin more slowly than thrombin. These effects may arise from a decrease in Ki of the inhibitors for thrombin-thrombomodulin or from changes in the active site not detected by tosyl-Gly-Pro-Arg-p-nitroanilide or antithrombin III. Bovine prothrombin fragment 2 inhibits thrombin clotting activity (Kd less than 7.5 microM) and acts as a competitive inhibitor of protein C activation (Kis = 2.1 microM). The data are consistent with a mechanism whereby thrombomodulin alters thrombin specificity by either binding to or allosterically altering a site on thrombin distinct from the catalytic center required for binding or steric accommodation of fibrinogen, prothrombin fragment 2, heparin cofactor 2, and hirudin.  相似文献   

10.
11.
Human thrombomodulin, an endothelial-cell-membrane glycoprotein, has been purified from placenta by Triton X-100 extraction and by affinity chromatography on concanavalin A-Sepharose and thrombin-Sepharose. It has been characterized by its ability to promote the activation of human protein C by human alpha-thrombin in the presence of Ca2+ and fulfilled the requirements of a cofactor. Reconstitution of thrombomodulin into phospholipid vesicles containing anionic phospholipids resulted in an increased rate of activation of protein C. Cardiolipin and vesicles containing phosphatidylcholine/phosphatidylserine (1:1, w/w) were the most effective. The apparent Km of the thrombin-thrombomodulin complex for protein C was 2 microM. It was not changed in the presence of phospholipid, whereas the Vmax. could be apparently increased up to 3.2-fold depending on the phospholipid and on its concentration, the catalytic-centre activity reaching 15.7 mol of activated protein C formed/min per mol of thrombin. Above their optimal concentrations, phospholipids inhibited the amidolytic activity of activated protein C. Phospholipids had no effect on the activation of 4-carboxyglutamic acid-domainless protein C, a proteolytic derivative of protein C lacking the 4-carboxyglutamic acid residues. These results show that the positive effect of anionic phospholipids in the activation of protein C by the thrombin-thrombomodulin complex involves a Ca2+-dependent interaction between protein C and phospholipids. They suggest that the enhancement of thrombomodulin activity by such phospholipids may be of functional significance.  相似文献   

12.
Thrombomodulin is an endothelial glycoprotein that serves as a cofactor for protein C activation. To examine the ligand specificity of human thrombomodulin, we performed equilibrium binding assays with human thrombin, thrombin S205A (wherein the active site serine is replaced by alanine), meizothrombin S205A, and human factor Xa. In competition binding assays with CV-1(18A) cells expressing cell surface recombinant human thrombomodulin, recombinant wild type thrombin and thrombin S205A inhibited 125I-diisopropyl fluorophosphate-thrombin binding with similar affinity (Kd = 6.4 +/- 0.5 and 5.3 +/- 0.3 nM, respectively). However, no binding inhibition was detected for meizothrombin S205A or human factor Xa (Kd greater than 500 nM). In direct binding assays, 125I-labeled plasma thrombin and thrombin S205A bound to thrombomodulin with Kd values of 4.0 +/- 1.9 and 6.9 +/- 1.2 nM, respectively. 125I-Labeled meizothrombin S205A and human factor Xa did not bind to thrombomodulin (Kd greater than 500 nM). We also compared the ability of thrombin and factor Xa to activate human recombinant protein C. The activation of recombinant protein C by thrombin was greatly enhanced in the presence of thrombomodulin, whereas no significant activation by factor Xa was detected with or without thrombomodulin. Similar results were obtained with thrombin and factor Xa when human umbilical vein endothelial cells were used as the source of thrombomodulin. These results suggest that human meizothrombin and factor Xa are unlikely to be important thrombomodulin-dependent protein C activators and that thrombin is the physiological ligand for human endothelial cell thrombomodulin.  相似文献   

13.
Monoclonal antibodies for human thrombomodulin, a cofactor for thrombin-catalyzed activation of protein C, were prepared and their epitopes characterized. All six antibodies (MFTM-1-MFTM-6) bound to an elastase-digested active fragment of thrombomodulin, which contains six consecutive EGF domains. Binding of thrombomodulin to these antibodies did not depend on Ca2+ concentration. MFTM-4, MFTM-5, and MFTM-6 strongly inhibited protein C activation by thrombin and thrombomodulin. MFTM-4 and MFTM-5 inhibited thrombin binding to fixed thrombomodulin and bound to a recombinant mutant EGF456 protein, which contained the fourth, fifth, and sixth EGF domains of thrombomodulin. However, MFTM-6 did not inhibit thrombin binding to thrombomodulin and did not bind to EGF456 protein. Binding of thrombomodulin to fixed MFTM-4 or MFTM-5 was competitively inhibited by a recombinant mutant EGF45 protein which contained the fifth and sixth EGF-domains. These results suggest that epitopes of MFTM-4 and MFTM-5 are located in the fifth EGF domain of thrombomodulin. Thus, the binding site for thrombin is located in the fifth EGF domain. These results also suggest that an epitope for MFTM-6 is located at a region near the binding site for gamma-carboxyglutamic acid residues of protein C via Ca2+ on thrombomodulin.  相似文献   

14.
Human protein C is the precursor of a serine proteinase in plasma which contains nine 4-carboxyglutamic acid residues and functions as a potent anticoagulant. It is activated by thrombin in the presence of an essential endothelial-cell-membrane glycoprotein cofactor, thrombomodulin. In a purified human system, vitamin K-dependent proteins such as factor X, prothrombin and prothrombin fragment 1 were able to inhibit protein C activation by the thrombin-thrombomodulin complex, using either detergent-solubilized thrombomodulin or thrombomodulin reconstituted into vesicles consisting of phosphatidylcholine and phosphatidylserine (1:1, w/w). Factors VII and IX and protein S were much less efficient. Prothrombin fragment 1 behaved as a non-competitive inhibitor with apparent Ki values of 4 microM in the absence, and of 2-2.5 microM in the presence, of phospholipids. Heat decarboxylation of fragment 1 abolished its ability to interfere in protein C activation, and high phospholipid concentrations could attenuate its inhibitory effect and were responsible for a gradual loss of the non-competitive character. Fragment 1 also inhibited the activation of 4-carboxyglutamic acid-domainless protein C, a proteolytic derivative of protein C lacking the 4-carboxyglutamic acid residues, without any influence from phospholipids. At high thrombin concentrations, with respect to thrombomodulin, the inhibitory effect of fragment 1 was diminished. Fragment 1, at 3.8 microM, inhibited by 50% the activation of protein C (0.1 or 0.3 microM) by thrombin. These results suggest that the 4-carboxyglutamic acid domain of vitamin K-dependent proteins can act as a modulator of the protein C anticoagulant pathway through two distinct types of interaction. The functional 4-carboxyglutamic acid domain would be necessary to allow the enhancement of protein C activation in the presence of anionic phospholipids and it could recognize a phospholipid-independent binding site on the thrombin-thrombomodulin complex.  相似文献   

15.
To elucidate the binding sites for thrombin and protein C in the six epidermal growth factor (EGF) domains of human thrombomodulin, recombinant mutant proteins were expressed in COS-1 cells. Mutant protein EGF456, which contains the fourth, fifth, and sixth EGF domains from the NH2 terminus of thrombomodulin, showed complete cofactor activity in thrombin-catalyzed protein C activation, as did intact thrombomodulin or elastase-digested thrombomodulin. EGF56, containing the fifth and sixth EGF domains, did not have cofactor activity; but EGF45, containing the fourth and fifth EGF domains, had about one-tenth of the cofactor activity of EGF456. Thrombin binding to attached recombinant thrombomodulin (D123) was inhibited by EGF45 as well as by EGF56. A synthetic peptide (ECPEGYILDDGFICTDIDE), corresponding to Glu-408 to Glu-426 in the fifth EGF domain, inhibited thrombin binding to attached thrombomodulin (D123) with an apparent Ki of 95 microM. At Ca2+ concentrations of 0.25-0.3 mM, intact protein C was maximally activated by thrombin in the presence of EGF45, EGF456, or EGF1-6, which contains the first to sixth EGF domains; but such maximum cofactor activity was not observed when gamma-carboxyglutamic acid-domainless protein C was used. These findings suggest that: 1) thrombin binds to the latter half of the fifth EGF domain; and 2) protein C binds to the fourth EGF domain of thrombomodulin through Ca2+ ions.  相似文献   

16.
Rabbit thrombomodulin displays three distinct blood anticoagulant activities: it promotes the activation of protein C by thrombin (protein C activation cofactor activity); it promotes the inactivation of thrombin by thrombin (direct anticoagulant activity). The effects on these activities of mouse anti-thrombomodulin monoclonal antibodies and of the heparin-neutralizing proteins, platelet factor 4, histidine-rich glycoprotein, and S-protein, were investigated. One of the antibodies, which did not influence the functional properties of thrombomodulin, was used as an immunoaffinity ligand for purification of the protein. Two other antibodies, which were found to abrogate the protein C activation cofactor activity of the purified thrombomodulin, also abolished the antithrombin-dependent and the direct anticoagulant activities. The heparin-neutralizing proteins all inhibited the two latter activities, albeit to a varying extent, but did not appreciably affect the activation of protein C. These results are interpreted in relation to our previous finding that rabbit thrombomodulin contains an acidic domain, tentatively identified as a sulfated glycosaminoglycan (Bourin, M.-C., Boffa, M.-C., Bj?rk, I., and Lindahl, U. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 5924-5928). It is proposed that the acidic domain interacts with thrombin at the protein C activation site and that this interaction is a prerequisite to the expression of direct as well as antithrombin-dependent anticoagulant activity. The interaction is not essential to, but compatible with, the activation of protein C. Experiments involving treatment of thrombomodulin with various glycanases or with nitrous acid, followed by measurement of anticoagulant activities, indicated that the acidic domain is constituted by a sulfated galactosaminoglycan and not by a heparin-related polysaccharide as previously suggested.  相似文献   

17.
The association of thrombin with thrombomodulin, a non-enzymatic endothelial cell surface receptor, alters the substrate specificity of thrombin. Complex formation converts thrombin from a procoagulant to an anticoagulant enzyme. Structure-function analysis of this change in specificity is facilitated by the availability of two soluble proteolytic derivatives of thrombomodulin, one consisting of the six repeated growth factor-like domains of thrombomodulin (GF1-6) and the other containing only the fifth and sixth such domains (GF5-6). Both derivatives can bind to thrombin and block fibrinogen clotting activity, though only the larger GF1-6 can stimulate the activation of protein C. To ascertain whether the substrate specificity change from fibrinogen to protein C is accompanied by structural changes in the active site of the enzyme, fluorescent dyes were positioned at different locations within the active site. A 5-dimethylaminonaphthalene-1-sulfonyl (dansyl) dye was covalently attached to the active site serine to form dansyl-thrombin, while either a fluorescein or an anilinonaphthalene-6-sulfonic acid (ANS) dye was attached covalently to the active site histidine of thrombin via a D-Phe-Pro-Arg linkage. The environment of the dansyl dye was altered in a similar fashion when either GF1-6 or GF5-6 bound to thrombin, since a similar reduction in dansyl emission intensity was elicited by these two thrombomodulin derivatives (25 and 32%, respectively). These spectral changes, and all others in this study, were saturable and reached a maximum when the ratio of thrombomodulin derivative to thrombin was close to 1. The environments of the fluorescein and ANS dyes were also altered when GF1-6 bound to thrombin because binding resulted in emission intensity changes of -13% and +18%, respectively. In contrast, no fluorescence changes were observed when the fluorescein and ANS thrombin derivatives were titrated with GF5-6. Thus, the structure of the active site was altered by thrombomodulin both immediately adjacent to the active site serine and also more than 15 A away from it. However, the structural change far from Ser-195 was only elicited by thrombomodulin species that stimulate thrombin-dependent activation of protein C.  相似文献   

18.
Structure-function relationships in the 6 epidermal growth factor-like domains of human thrombomodulin (TME, residues 227-462) were studied by deletion mutagenesis. Purified and characterised proteins were used for kinetic studies. Deletion of EGF1, EGF2 and residues 310-332 in EGF3 had no effect on thrombin binding (Kd) or on kcat/KM for protein C activation by the thrombin-thrombomodulin complex. Deletion of the rest of EGF3 and the interdomain loop between EGF3 and EGF4 had no effect on Kd but decreased kcat/KM to 10% of TME. Deletion of residues 447-462 of EGF6 had no effect on kcat/KM but increased Kd for thrombin approximately 6-fold. Thus, the region 333-350 in EGF3-4 is critical for protein C activation by the thrombin-thrombomodulin complex and the region 447-462 in EGF6 is critical for thrombin binding.  相似文献   

19.
Thrombomodulin is the endothelial cell cofactor for thrombin-catalyzed activation of protein C. Recently, we isolated a 10-kDa thrombin binding fragment, CB3, from the epidermal growth factor precursor homology domain (epidermal growth factor (EGF)-like regions) of thrombomodulin (Kurasawa, S., Stearns, D. J., Jackson, K.W., and Esmon, C.T. (1988) J. Biol. Chem. 263, 5993-5996). The CB3 fragment did not, however, support protein C activation. A 29-kDa fragment, called CB23, has now been isolated and corresponds to residues 310-486 in the EGF-like region of thrombomodulin. The CB23 fragment bound thrombin and accelerated thrombin-catalyzed protein C activation. With two separate preparations of CB23, the Km for protein C was 1.6 and 1.9 microM and the Kd for thrombin was 8.9 and 13.2 nM. The carboxyl terminus of CB23 and CB3 was identified by isolation and sequence analysis of a tryptic peptide from CB3. The sequence of this peptide corresponded to Asn457-Ser486, indicating that the carboxyl terminus of these fragments is 6 residues beyond the sixth EGF-like region of thrombomodulin. In addition, although CB3 cannot accelerate protein C activation, CB3 did inhibit the rate of thrombin-catalyzed fibrinopeptide release from fibrinogen. Thus, like native thrombomodulin, CB3 will alter thrombin's substrate specificity, but protein C activation requires additional information all of which can be provided by other regions of the EGF-like domain.  相似文献   

20.
The endothelial cell surface membrane protein thrombomodulin binds thrombin with high affinity and acts as both a cofactor for protein C activation and an inhibitor of fibrinogen hydrolysis. We have previously shown that bovine thrombomodulin is a competitive inhibitor of fibrinogen binding to thrombin but has no effect on thrombin activity toward tripeptide substrates or antithrombin III. Hence, thrombomodulin and fibrinogen may share macromolecular specificity sites on thrombin which are distinct from the active site. In this investigation, we have studied the interaction of thrombin-thrombomodulin with fibrinogen and various thrombin derivatives. We show that fibrinogen is a competitive inhibitor of thrombomodulin binding to thrombin, with a Kis = 10 microM. Thrombin derivatives (bovine (pyridoxal phosphate)4-thrombin and human thrombin Quick I), which bind fibrinogen with much reduced affinity, are shown to also interact with thrombomodulin with greatly reduced affinity. These results are consistent with the hypothesis that thrombomodulin and fibrinogen share macromolecular specificity sites on thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号