首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The effect of CO2 concentration on the rate of photorespiratory ammonium excretion and on glutamine synthetase (GS) and carbonic anhydrase (CA) isoenzymes activities has been studied in Chlamydomonas reinhardtii cw-15 mutant (lacking cell wall) and in the high CO2-requiring double mutant cia-3/cw-15 (lacking cell wall and chloroplastic carbonic anhydrase). In cw-15 cells, both the extracellular (CAext) and chloroplastic (CAchl) CA activities increased after transferring cells from media bubbled with 5% CO2 in air (v/v, high-Ci cells) to 0.03% CO2 (low-Ci cells), whereas in cia-3/cw-15 cells only the CAext was induced after adaptation to low-Ci conditions and the CAchl activity was negligible. During adaptation to low-Ci conditions in the presence of 1 mM of l-methionine-D,L-sulfoximine (MSX), a specific inhibitor of GS activity, both mutant strains excreted photorespiratory ammonium into nitrogen free medium. In addition, the ammonium excretion rate by cw-15 in the presence of MSX was lower in cells grown and kept at 5% CO2 than in high-Ci cells adapted to 0.03% CO2. The double mutant cia-3/cw-15 excreted photorespiratory ammonium at a higher rate than did cw-15. Total GS activity (GS-1 plus GS-2) increased during adaptation to 0.03% CO2 in both strains of C. reinhardtii. However, only the activity GS-2, which is located in the chloroplast, increased during the adaptation to low CO2, whereas the cytosolic GS-1 levels remained similar in high and low-Ci cells. We conclude that: (1) cia-3/cw-15 cells lack chloroplastic CA activity; (2) in C. reinhardtii photorespiratory ammonium is refixed in the chloroplasts through the GS-2/GOGAT cycle; and (3) chloroplastic GS-2 concentration changes in response to the variation of environmental CO2 concentration.  相似文献   

2.
Using mass-spectrometric measurements of 18O exchange from 13C18O2 we determined the activity of carbonic anhydrase (CA; EC 4.2.1.1) in chloroplast envelope membranes isolated from Chlamydomonas reinhardtii cw-15. Our results show an enrichment of CA activity in these fractions relative to the activity in the crude chloroplast. The envelope CA activity increased about 8-fold during the acclimation to low-CO2 conditions and was completely induced within the first 4 h after the transfer to air levels of CO2. The CA-activity was not dissociated from envelope membranes after salt treatment. In addition, no cross-reactivity with other CA isoenzymes of Chlamydomonas was observed in our chloroplast envelope membranes. All these observations indicated that the protein responsible for this activity was a new CA isoenzyme, which was an integral component of the chloroplast envelopes from Chlamydomonas. The catalytic properties of the envelope CA activity were completely different from those of the thylakoid isoenzyme, showing a high requirement for Mg2+ and a high sensitivity to ethoxyzolamide. Analysis of the integral envelope proteins showed that there were no detectable differences between high- and low-inorganic carbon (Ci) cells, suggesting that the new CA activity was constitutively expressed in both high- and low-Ci cells. Two different high-Ci-requiring mutants of C. reinhardtii, cia-3 and pmp-1, had a reduced envelope CA activity. We propose that this activity could play a role in the uptake of inorganic carbon at the chloroplast envelope membranes.  相似文献   

3.
During starch degradation in intact isolated chloroplasts from Chlamydomonas reinhardtii gas exchange was studied with a mass spectrometer. Oxygen uptake by intact chloroplasts in the dark never exceeded 1.5% of the starch degradation rate [maximum 15 nmol O2 (mg Chl)−1 h−1 consumed. 1 000 nmol glucose (mg Chl)−1h−1 degraded]. Evolution of CO2 under aerobic conditions [9.8–28 nmol (mg Chl)−1 h−1] was stimulated by addition of 0.1–0.5 m M oxaloacetate [393–425 nmol CO2 (mg Chl)−1 h−1]. Pyridoxal phosphate (5 m M ) inhibited starch degradation by more than 80%, but had no effect on O2 uptake. Starch degradation rates and CO2 evolution did not differ under acrobic and anaerobic conditions. Increasing Pi in the reaction medium from 0.5 m M to 5.0 m M stimulated starch degradation by 230 and 260% under aerobic and anaerobic conditions, respectively. A rapid autooxidation of reduced ferredoxin was observed in a reconstituted system consisting of purified Chlamydomonas ferredoxin, purified Chlamydomonas NADP-ferredoxin oxidoreductase (EC 1.6.7.1) and NADPH. Addition of isolated thylakoids from C. reinhardtii did not affect the rate of O2 uptake. Our results clearly indicate the absence of any oxygen requirement during starch degradation in isolated chloroplasts.  相似文献   

4.
To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations,Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2concentrations within the range 3-186 μmol/L and the biochemical composition, carbonic anhydrase (CA),and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate,and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186μmol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in Chlorella pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186 μmol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.  相似文献   

5.
Nucleated assembly of Chlamydomonas and Volvox cell walls   总被引:9,自引:2,他引:7       下载免费PDF全文
The Chlamydomonas reinhardtii cell wall is made up of hydroxyproline-rich glycoproteins, arranged in five distinct layers. The W6 (crystalline) layer contains three major glycoproteins (GP1, GP2, GP3), selectively extractable with chaotropic agents, that self-assemble into crystals in vitro. A system to study W6 assembly in a quantitative fashion was developed that employs perchlorate-extracted Chlamydomonas cells as nucleating agents. Wall reconstitution by biotinylated W6 monomers was monitored by FITC-streptavidin fluorescence and quick-freeze/deep-etch electron microscopy. Optimal reconstitution was obtained at monomer concentrations (0.2-0.3 mg/ml) well below those required for nonnucleated assembly. Assembly occurred from multiple nucleation sites, and faithfully reflected the structure of the intact W6 layer. Specificity of nucleated assembly was demonstrated using two cell-wall mutants (cw-2 and cw-15); neither served as a substrate for assembly of wild-type monomers. In addition, W6 sublayers were assembled from purified components: GP2 and GP3 coassembled to form the inner (W6A) sublayer; this then served as a substrate for self-assembly of GP1 into the outer (W6B) sublayer. Finally, evolutionary relationships between C. reinhardtii and two additional members of the Volvocales (Chlamydomonas eugametos and Volvox carteri) were explored by performing interspecific reconstitutions. Hybrid walls were obtained between C. reinhardtii and Volvox but not with C. eugametos, confirming taxonomic assignments based on structural criteria.  相似文献   

6.
7.
A thin section study of mating Chlamydomonas cell wall-less CW 15 mating type plus (mt+) and mating type minus (mt-) gametes utilized filipin. The results show extensive labeling of mt+ and mt- plasma membranes. No labeling was seen on the mating structure membranes of activated mt+ or mt- gametes. These results indicate that differences exist between the plasma membrane and the mating structure membrane of gametes. If filipin is specific for the 3-beta-OH sterol, ergosterol and/or other Chlamydomonas sterols, then these results imply that the fusing mating structure membranes may be altered or reduced in sterol content. Such lipid specializations may increase local membrane fluidity and thereby facilitate the site-specific cell fusion associated with mating Chlamydomonas gametes.  相似文献   

8.
Potassium Fluxes in Chlamydomonas reinhardtii (II. Compartmental Analysis)   总被引:2,自引:2,他引:0  
Malhotra B  Glass A 《Plant physiology》1995,108(4):1537-1545
42K+ and 86Rb+ were used to determine the subcellular distribution of potassium in Chlamydomonas reinhardtii by compartmental analysis. In both wild type and a mutant strain, three distinct compartments (referred to as I, II, and III) were apparent. Using 42K+, we found that these had half-lives for K+ exchange of 1.07 min, 12.8 min, and 2.9 h, respectively, in wild-type cells and 0.93 min, 14.7 min, and 9.8 h, respectively, for the mutants. Half-lives were not significantly different when 86Rb+ was used to trace K+. Compartments I and II probably correspond to the cell wall and cytoplasm, respectively. Based on the lack of a large central vacuole in Chlamydomonas, the effect of a dark pretreatment on the kinetic properties of compartment III and the similarity between the [K+] of compartment III and that of isolated chloroplasts, this slowly exchanging compartment was identified as the chloroplast. Growth of wild-type cells at 100 [mu]M (instead of 10 mM K+) caused no change of cytoplasmic [K+] but reduced chloroplast [K+] very substantially. The mutants failed to grow at 100 [mu]M K+.  相似文献   

9.
Voigt J  Frank R 《The Plant cell》2003,15(6):1399-1413
The cell wall of the unicellular green alga Chlamydomonas reinhardtii consists predominantly of Hyp-rich glycoproteins, which also occur in the extracellular matrix of multicellular green algae and higher plants. In addition to the Hyp-rich polypeptides, the insoluble glycoprotein framework of the Chlamydomonas cell wall contains minor amounts of 14-3-3 proteins, as revealed by immunochemical studies and mass spectroscopic analysis of tryptic peptides. Polypeptides immunologically related to the 14-3-3 proteins also were found in the culture medium of Chlamydomonas. The levels of two of these 14-3-3-related polypeptides were decreased in the culture medium of the wall-deficient mutant cw-15. These findings indicate that 14-3-3 proteins are involved in the cross-linking of Hyp-rich glycoproteins in the Chlamydomonas cell wall.  相似文献   

10.
A photosystem for solar energy conversion, comprised of a culture of green microalgae supplemented with methyl viologen, is proposed. The capture of solar energy is based on the Mehler reaction. The reduction of methyl viologen by the photosynthetic apparatus and its subsequent reoxidation by oxygen produces hydrogen peroxide. This is a rich-energy compound that can be used as a nonpollutant and efficient fuel. Four different species of green microalgae, Chlamydomonas reinhardtii (21gr) C. reinhardtii (CW15), Chlorella fusca, and Monoraphidium braunii, were tested as a possible biocatalyst. Each species presented a different efficiency level in the transformation of energy. Azide was an efficient inhibitor of the hydrogen peroxide scavenging system while maintaining photosynthetic activity of the microalgae, and thus significantly increasing the production of the photosystem. The strain C. reinhardtii (21gr), among the species studied, was the most efficient with an initial production rate of 185 micromol H(2)O(2)/h x mg Chl and reaching a maximum of 42.5 micromol H(2)O(2)/mg Chl when assayed in the presence of azide inhibitor.  相似文献   

11.
To investigate the biochemical response of freshwater green algae to elevated CO2 concentrations, Chlorella pyrenoidosa Chick and Chlamydomonas reinhardtii Dang cells were cultured at different CO2 concentrations within the range 3-186μmol/L and the biochemical composition, carbonic anhydrase (CA),and nitrate reductase activities of the cells were investigated. Chlorophylls (Chl), carotenoids, carbonhydrate,and protein contents were enhanced to varying extents with increasing CO2 concentration from 3-186μmol/L. The CO2 enrichment significantly increased the Chl a/Chl b ratio in ChloreUa pyrenoidosa, but not in Chlamydomonas reinhardtii. The CO2 concentration had significant effects on CA and nitrate reductase activity. Elevating CO2 concentration to 186μmol/L caused a decline in intracellular and extracellullar CA activity. Nitrate reductase activity, under either light or dark conditions, in C. reinhardtii and C. pyrenoidosa was also significantly decreased with CO2 enrichment. From this study, it can be concluded that CO2 enrichment can affect biochemical composition, CA, and nitrate reductase activity, and that the biochemical response was species dependent.  相似文献   

12.
Singh KK  Chen C  Gibbs M 《Plant physiology》1993,101(4):1289-1294
The photoregulation of chloroplastic respiration was studied by monitoring in darkness and in light the release of 14CO2 from whole chloroplasts of Chlamydomonas reinhardtii F-60 and spinach (Spinacia oleracea L.) supplied externally with [14C] glucose and [14C]-fructose, respectively. CO2 release was inhibited more than 90% in both chloroplasts by a light intensity of 4 W m-2. Oxidants, oxaloacetate in Chlamydomonas, nitrite in spinach, and phenazine methosulfate in both chloroplasts, reversed the inhibition. The onset of the photoinhibitory effect on CO2 release was relatively rapid compared to the restoration of CO2 release following illumination. In both darkened chloroplasts, dithiothreitol inhibited release. Of the four enzymes (fructokinase, phosphoglucose isomerase, glucose-6-P dehydrogenase, and gluconate-6-P dehydrogenase) in the pathway catalyzing the release of CO2 from fructose, only glucose-6-P dehydrogenase was deactivated by light and by dithiothreitol.  相似文献   

13.
14.
The localization of the 36-kD polypeptide of Chlamydomonas reinhardtii induced by photoautotrophic growth on low CO2 concentrations (0.03% in air [v/v], low CO2-grown cells) has been investigated. This polypeptide was specifically localized to the chloroplast envelope membranes isolated from low CO2-grown cells and was not present in the chloroplast envelopes isolated from high (5% CO2 in air [v/v]) CO2-grown cells. The 36-kD protein does not show carbonic anhydrase activity and was not present on the plasma membranes isolated from low CO2-grown cells. This protein may, in part, account for the different inorganic carbon uptake characteristics observed in chloroplasts isolated from high and low CO2-grown cells of C. reinhardtii.  相似文献   

15.
【背景】藻类是生产生物柴油的主要原料,而一些真菌和细菌能够与藻类共生并提高生物柴油产量,因此藻-菌共生培养技术成为国内外研究的热点。【目的】研究共生真菌Simplicilliumlanosoniveum对衣藻Chlamydomonas reinhardtii细胞生长和脂类合成的影响。【方法】将分离的蓝藻共生真菌和衣藻混合(共生)培养。【结果】与衣藻单独培养相比,混合培养衣藻的比生长速率(0.20 d-1)、细胞产率[0.17 g/(L·d)]和生物量(2.85 g/L)分别提高了10.3%、51.3%和55.7%;脂类比合成速率[0.68 mg/(g·d)]、合成速率[1.95 mg/(L·d)]和含量(220.4 mg/g)分别提高了33.3%、107.5%和32.0%,并且脂类中的饱和脂肪酸以及单不饱和脂肪酸C18-1和C18-2的比例上升,有利于生物柴油的加工。【结论】真菌Simplicilliumlanosoniveum能够促进衣藻的生长和脂类合成,因此藻-菌混合培养可用于生物柴油原料的生产。  相似文献   

16.
We describe a quick and reliable protocol to determine the plus or minus mating type of haploid Chlamydomonas reinhardtii strains from very small amounts of cells. The method combines a fast DNA preparation adapted from forensic work of Walsh et al. (1991) with one for use with Chlamydomonas by Berthold et al. (1993). We used PCR to amplify the minus-specific mid gene (minus dominance) or the plus specific fus1 gene (fusion). Both primer pairs have the same optimum annealing temperature and could be used in the same PCR reaction. The fus1 and mid amplification products could be distinguished by agarose gel electrophoresis due to their different PCR product size. Diploid strains, which should have both mating type genes, could also be detected by the occurrence of both amplification products.  相似文献   

17.
Intracellular carbonic anhydrase of Chlamydomonas reinhardtii.   总被引:3,自引:1,他引:2       下载免费PDF全文
An intracellular carbonic anhydrase (CA; EC 4.2.1.1) was purified to homogeneity from a mutant strain of Chlamydomonas reinhardtii (CW 92) lacking a cell wall. Intact cells were washed to remove periplasmic CA and were lysed and fractionated into soluble and membrane fractions by sedimentation. All of the CA activity sedimented with the membrane fraction and was dissociated by treatment with a buffer containing 200 mM KCI. Solubilized proteins were fractionated by ammonium sulfate precipitation, anionic exchange chromatography, and hydrophobic interaction chromatography. The resulting fraction had a specific activity of 1260 Wilbur-Anderson units/mg protein and was inhibited by acetazolamide (50% inhibition concentration, 12 nM). Final purification was accomplished by the specific absorption of the enzyme to a Centricon-10 microconcentrator filter. A single, 29.5-kD polypeptide was eluted from the filter with sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer, and a 1.5 M ammonium sulfate eluate contained CA activity. In comparison with human CA isoenzyme II, the N-terminal and internal amino acid sequences from the 29.5-kD polypeptide were 40% identical with the N-terminal region and 67% identical with an internal conserved region. Based on this evidence, we postulate that the 29.5-kD polypeptide is an internal CA in C. reinhardtii and that the enzyme is closely related to the alpha-type CAs observed in animal species.  相似文献   

18.
Chloroplasts from the cell wall mutant cw-15-2 of Chlamydomonas reinhardii were isolated by disruption of the cells in the Yeda press and fractionation through step gradients of Percoll. The resulting chloroplast fraction contained 80–85% intact chloroplasts. Electron micrographs of thin sections of the chloroplast fraction showed some cytoplasmic impurities, although almost no cytoplasmic ribosomes were detected by analysis of the ribosomal subunits.The isolated chloroplasts are active in photosynthetic O2-evolution and CO2-fixation, with the highest rates obtained in the presence of ATP.The chloroplast fraction also showed high rates of light-dependent in organello protein synthesis, with labelling of discrete chloroplast proteins known to be synthesized in the chloroplasts.  相似文献   

19.
By studying the import of radioactively labelled small subunit of ribulose-1,5-bisphosphate carboxylase (pSS) into chloroplasts of the green alga C. reinhardtii cw-15 protein delivery to chloroplasts was found to vary during the cell cycle. Chloroplasts were isolated from highly synchronous cultures at different time points during the cell cycle. When pSS was imported into 'young' chloroplasts isolated early in the light period about three times less pSS was processed to small subunit SS than in 'mature' chloroplasts from the middle of the light period. In 'young' chloroplasts also, less pSS was bound to the envelope surface. During the second half of the light period the import competence of isolated chloroplasts decreased again when based on chlorophyll content or cell volume, but did not change significantly when related to chloroplast number. Measurements of pSS binding to the surface of chloroplasts of different age indicated that the adaptation of protein import competence during the cell cycle is due to a variation of the number of binding sites per chloroplast surface area, rather than to modulation of the binding constant.  相似文献   

20.
The Chlamydomonas reinhardtii cia3 mutant has a phenotype indicating that it requires high-CO(2) levels for effective photosynthesis and growth. It was initially proposed that this mutant was defective in a carbonic anhydrase (CA) that was a key component of the photosynthetic CO(2)-concentrating mechanism (CCM). However, more recent identification of the genetic lesion as a defect in a lumenal CA associated with photosystem II (PSII) has raised questions about the role of this CA in either the CCM or PSII function. To resolve the role of this lumenal CA, we re-examined the physiology of the cia3 mutant. We confirmed and extended previous gas exchange analyses by using membrane-inlet mass spectrometry to monitor(16)O(2),(18)O(2), and CO(2) fluxes in vivo. The results demonstrate that PSII electron transport is not limited in the cia3 mutant at low inorganic carbon (Ci). We also measured metabolite pools sizes and showed that the RuBP pool does not fall to abnormally low levels at low Ci as might be expected by a photosynthetic electron transport or ATP generation limitation. Overall, the results demonstrate that under low Ci conditions, the mutant lacks the ability to supply Rubisco with adequate CO(2) for effective CO(2) fixation and is not limited directly by any aspect of PSII function. We conclude that the thylakoid CA is primarily required for the proper functioning of the CCM at low Ci by providing an ample supply of CO(2) for Rubisco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号