首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用两相法化纯化质膜微囊,研究了分布西北沙地区的两种生态型芦苇(Phragmites communis trih.)水生芦苇和重度盐化草甸芦苇,分别简称为水芒和盐芦)叶片质膜H - ATPase的部分性质.结果显示,与水芦相比,盐芦质膜H -ATPase的ATP水解活性升高,Km值由1.27mmol\l降至Vmax没有显著差异.并且该酶活性对温度的敏感必玫PH谱型也发生了变化.以对硝基苯磷酸盐为底物,低浓度时盐芦的的质膜H -ATPase水解活性有差异.钡酸盐抑制实验表明,两种生态的质膜H -ATPase磷酸-酶区的催化性质不同.胰酶对质膜H -ATPase活性的活化谱型也存在差异,说明该酶C末端的结构或性质发生了变化.此外,与水芦相比,盐芦质膜H -ATPase的质子泵活性的耦联程度也升高了.以上结果明,当芦苇从水生环境向盐渍环境过渡时,质膜H -ATPase的催化性质发生了变化,这些变化可能是由酶结构的修饰和不同的同工酬酶谱引起的.H -ATPase催化性质的变化可能是对盐渍生境的适应性反应.  相似文献   

2.
不同生境两种生态型芦苇叶片质膜H~ -ATPase的比较(英文)   总被引:1,自引:0,他引:1  
利用两相法纯化质膜微囊,研究了分布于西北沙漠地区的两种生态型芦苇(Phragmites communis Trin.)(水生芦苇和重度盐化草甸芦苇,分别简称为水芦和盐芦)叶片质膜H -ATPase的部分性质。结果显示,与水芦相比,盐芦质膜H -ATPase的ATP水解活性升高,Km值由1.27 mmol/L降至0.30 mmol/L,但Vmax没有显著差异。并且该酶活性对温度的敏感性和pH谱型也发生了变化。以对硝基苯磷酸盐为底物,低浓度时盐芦的质膜H -ATPase水解活性高于水芦,高浓度时则没有差异。Km在水芦和盐芦中分别为3.61 mmol/L和1.92 mmol/L,但Vmax在两种生态型中没有差异。钒酸盐抑制实验表明,两种生态型的质膜H -ATPase磷酸-酶区的催化性质不同。胰酶对质膜H -ATPase活性的活化谱型也存在差异,说明该酶C末端的结构或性质发生了变化。此外,与水芦相比,盐芦质膜H -ATPase的质子泵活性及与水解活性的耦联程度也升高了。以上结果说明,当芦苇从水生环境向盐渍环境过渡时,质膜H -ATPase的催化性质发生了变化,这些变化可能是由酶结构的修饰和不同的同工酶谱引起的。H -ATPase催化性质的变化可能是对盐渍生境的适应性反应。  相似文献   

3.
不同生态型芦苇叶片蛋白质双向电泳系统的筛选和优化   总被引:3,自引:0,他引:3  
通过优化组合植物蛋白质提取方法及与之匹配的蛋白质裂解液,采用改进的O’Farrel双向电泳系统,以自然生境野生芦苇叶片为材料,筛选出一种适合纤维含量高、革质化明显的4种不同生态型芦苇(水生芦苇、轻度盐化草甸芦苇、重度盐化草甸芦苇、沙丘芦苇)叶片蛋白质分析的双向电泳系统,即以饱和酚-醋酸铵/甲醇沉淀法提取叶片蛋白质样品,经裂解液[8mol/L尿素,2mol/L硫脲,4%CHAPS,65mmol/LDTT,2%Ampholine(pH3.5~10:pH5~8=1:4)]裂解后按80μg上样,银染后获得背景清晰、蛋白质分辨率较高的双向电泳图谱.该系统用于水稻等植物叶片蛋白质双向电泳分析,同样获得较好的电泳图谱和分辨率。  相似文献   

4.
5.
The properties and kinetics of ATP and p-nitrophenyl phosphate (PNPP) hydrolysis activities of plasma membrane H+-ATPase from the two reed ecot ypes, swamp reed (SR) and dune reed (DR), were investigated. The pH optimum of the plasma membrane H+-ATPase in both reed ecotypes was similar but the sensitivity of the enzyme to the reaction medium pH seemed to be higher in DR than that in SR. Compared to SR, the DR exhibited a higher Vmax value for ATP hydrolysis whereas the Km value was almost similar in both reed ecotypes. The PNPP hydrolysis of the plasma membrane H+-ATPase was also studied in both reed ecotypes at increasing PNPP concentrations. Km and Vmax for PNPP hydrolysis showed great differences in the two reed ecotypes and in DR the Km and Vmax values were 2- and 10-fold, respectively, higher than those in SR. The ATP hydrolysis activity of the plasma membrane was markedly inhibited by hydroxylamine in both reed ecotypes, and the percentage inhibition of ATP hydrolysis rate seemed higher in DR than that in SR. In addition, the structure or property of the C-terminal end of the plasma membrane H+-ATPase were also different in the two reed ecotypes. These data suggest that different isoforms of the plasma membrane H+-ATPase might be developed and involved in the adaptation of the plant to the long-term drought-prone habitat.This research was supported by Natural Science Foundation of China (No. 30270238 & No. 30470274) and the National Key Basic Research Special Funds of China (G1999011705).  相似文献   

6.
The plasma membrane H+ V-ATPase from the midgut of larval Manduca sexta, commonly called the tobacco hornworm, is the sole energizer of epithelial ion transport in this tissue, being responsible for the alkalinization of the gut lumen up to a pH of more than 11 and for any active ion movement across the epithelium. This minireview deals with those topics of our recent research on this enzyme that may contribute novel aspects to the biochemistry and physiology of V-ATPases. Our research approaches include intramolecular aspects such as subunit topology and the inhibition by macrolide antibiotics, intermolecular aspects such as the hormonal regulation of V-ATPase biosynthesis and the interaction of the V-ATPase with the actin cytoskeleton, and supramolecular aspects such as the interactions of V-ATPase, K+/H+ antiporter, and ion channels, which all function as an ensemble in the transepithelial movement of potassium ions.  相似文献   

7.
The glutathione (GSH) metabolic characteristics and redox balance in three ecotypes of reed (Phragmites communis), swamp reed (SR), dune reed (DR), and heavy salt meadow reed (HSMR), from different habitats in desert regions of northwest China were investigated. The DR possessed the highest rate of GSH biosynthesis and metabolism with the lowest levels of total and reduced GSH and its biosynthetic precursors, gamma-glutamylcysteine (gamma-EC) and cysteine (Cys), of the three reed ecotypes. This suggests that a higher rate of GSH biosynthesis and metabolism, but not GSH accumulation, might be involved in the adaptation of this terrestrial reed ecotype to its dry habitat. The HSMR shared this profile although it exhibited the highest reduced thiol levels of the three ecotypes. Two key enzymes in the Calvin-cycle possessing exposed sulfhydryl groups, NADP(+)-dependent glyceraldehydes-3-phosphate dehydrogenase (G3PD) and fructose-1,6-bisphosphatase (FBPase), and other two key enzymes in the pentose-phosphate pathway (PPP), glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6-PGD), had very similar activities in the three reed ecotypes. Compared to the SR, the DR and HSMR had higher ratios of NADPH/NADP+ and NADH/NAD+, indicating that a more reduced redox status in the plant cells might be involved in the survival and adaptation of the two terrestrial reed ecotypes to long-term drought and salinity, respectively. These results suggest that changes of GSH metabolism and redox balance were important components of the adaptation of reed, a hydrophilic plant, to more extreme dune and saline habitats. The coordinated up-regulations of the rate of GSH biosynthesis and metabolism and reduction state of redox status of plant cells, conferred on the plant high resistance or tolerance to long-term drought and salinity.  相似文献   

8.
The adaptation to glucose and starch foods insix species, D. melanogaster, D.virilis, D. saltans, D. funebris,D. levanonensis and D. americana, wasstudied by measuring productivity. D.melanogaster and D. virilis adapted more to thestarch environment than to the glucose environment,while D. saltans adapted more to the glucoseenvironment than to the starch environment. D.funebris, D. levanonensis, and D. americana did not distinctlyadapt to either environment. In addition, the regulationof amylase in the six species was investigated bymeasuring the levels of amylase activity with glucoseand starch food environments. The levels of amylaseactivity in D. levanonensis and D.saltans were substantially low, indicating thatthese species cannot utilize starch as a carbon source.The starch-adapted species, D. melanogaster and D.virilis, showed higher levels of amylase activitywith the starch environment and higher inducibility.These results suggest that changing the regulation ofamylase is important for the adaptation to a starch environment inDrosophila.  相似文献   

9.
E. Komor  M. Thom  A. Maretzki 《Planta》1987,170(1):34-43
Suspension-cultured cells of sugarcane (Saccharum sp. hybrids) did not oxidize exogenously supplied NADH in the absence of ferricyanide (potassium hexacyanoferrate [III]), whereas they did at a low rate in the presence of ferricyanide. Concomitantly, ferricyanide was reduced at a slow rate. Neither a pH change nor a change in respiration was caused by the addition of NADH and-or ferricyanide, but ferricyanide was a strong inhibitor of sugar transport. In contrast to cells, protoplasts rapidly oxidized exogenous NADH. This oxidation was accompanied by an increase in oxygen consumption and a net proton disappearance from the medium. Exogenous ferricyanide was reduced only slowly by protoplasts. Simultaneous presence of NADH and ferricyanide produced two effects: 1) a very rapid stoichiometric oxidation of NADH and reduction of ferricyanide until one of the reaction compounds was exhausted, and 2) a nearly instantaneous inhibition of the slower phase of NADH oxidation, which was observed in the presence of NADH but absence of ferricyanide. The extra oxygen consumption and the alkalinization of the medium, as observed with NADH, were also immediately stopped by ferric ions and ferrous ions. The presence of NADH and ferricyanide caused a fast stoichiometric acidification of the medium. These results were taken as evidence that the oxidation of NADH in the absence of ferricyanide is not related to the NADH-ferricyanide-coupled redox reaction. Furthermore, addition of NADH caused some uncoupling of the protoplasts, an effect which would explain the strong acidification of the cell cytoplasm and the inhibition of various transport systems. The NADH-oxidizing systems oxidized both the -configurated pyridine nucleotide and the -configurated form. Since NADH-linked dehydrogenases usually do not work with -NADH (with the exception of the endoplasmic-reticulum-bound electron-transport system), the observed activities could have been derived from contaminating membranes and dying protoplasts in the suspension. All reported reactions partly or predominantly occurred in the supernatant of the protoplast suspension and increased considerably during incubation of the protoplasts. The rates and quantities of oxygen consumption, pH change, and ferricyanide reduction fitted with NADH oxidation in a stoichiometric ratio, which implied that all these reactions occurred in the extracellular space, without involving transmembrane steps. No evidence for a physiological role in energization of the plasmalemma was found.Abbreviation NADH -nicotinamide adenine dinucleotide reduced form  相似文献   

10.
Intact Phycomyces blaskesleeanus mycelia are capable of reducing extracellular ferricyanide and this transmembrane reduction is an enzymatic process, which is enhanced by the presence of 10 mM lactate. It is modulated in response to intracellular iron levels and negatively regulated by iron and copper. It is inhibited by NEM, p CMB, iodoacetate, Zn2+, Cd2+, dicumarol, and capsaicine analog, but not by cloroquine, and activated by Ca2+, Mg2+, Na+, and K+. Ferricyanide reduction was concomitant with proton release into the extracellular medium, both processes being greatly promoted by vitamin K3 following hyperbolic saturation kinetics with regard to ferricyanide concentration. No stoichiometric proton release was observed with regard to ferricyanide reduction in the absence or the presence of vitamin K3. Proton release coupled with ferricyanide reductase activity does not appear to be due to H+-ATPase. The relevance of these findings to the relationship between the two processes is discussed.  相似文献   

11.
Four-day-old corn (Zea mays L. ) seedlings, which had grown in aerated 0.5 x Hoagland solution (pH 5.7) in dark were stressed by 50, 100 and 150 mmol/L NaCI solution for 6, 12 and 24 h respectively. The root segments (0 to 20 mm from the tip) were sampled for study. The results showed that the relative elongation rate (RER), H+-extrusion rate and Fe(CN)3-6 reduction rate of the roots declined with the increase of NaC1 concentration, but H+-extmsion rate restored somewhat with the time course. NADH oxidation rate increased up to 12 h with the increase of NaC1 concentration and then decreased significantly, while under the same concentration of NaC1 NADH oxidation rate decreased with the time course. The relative coeffecient (r) of RER and H+-extrusion rate under NaCI stress was 0.999 8. Therefore, it is suggested that the inhibition of the elongation growth by NaC1 stress is closely related to the inhibition of redox system and H + -ATPase activity of plasma membrane.  相似文献   

12.
Summary The claim that osmium-containing deposits which lack lead are frequently and incorrectly interpreted as enzymatic reaction products in lead precipitation techniques for ATPase localization in plants is without foundation. Proper controls clearly demonstrate the enzymatic origin of membrane-located deposits and the presence of lead is confirmed by analytical electron microscopy.  相似文献   

13.
The auxin sensitivity of the plasma-membrane H+-ATPase from tobacco leaves (Nicotiana tabacum L. cv. Xanthi) depends on the physiological state of the plant (Santoni et al., 1990, Plant Sci. 68, 33–38). Results based on the study of auxin sensitivity according to culture conditions which accelerate or delay tobacco development demonstrate that the highest auxin sensitivity is always associated with the end of the period of induction to flowering. Auxin stimulation of H+-translocation activity corresponds to an increase of the apparent ATPase affinity for ATP. The plasma-membrane H+-ATPase content, measured with an enzyme-linked immunosorbent assay using a specific anti-H+-ATPase antibody, varies according to plant development, and was found to increase by 100% during floral induction. The specific molecular ATPase activity also changes according to plant development; more particularly, the decrease in molecular ATPase activity upto and during the floral-induction period parallels the increase of sensitivity to indole-3-acetic acid.Abbreviations ELISA enzyme-linked immunosorbent assay - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate Authors are grateful to Mrs. Grosclaude (Lab. Virologie, INRA, Jouy-en-Josas, France) and Mrs. Boudon (Lab. Mycoplasmes, INRA, Dijon, France) for support and advice in the preparation of antibodies. This work was supported by grants No. 89/512/6 from the E.P.R of Bourgogne and No. 89 C 0662 from M.R.T.  相似文献   

14.
Acidification of the external medium of the yeast Saccharomyces cerevisiae, mainly caused by proton extrusion by plasma membrane H+-ATPase, was inhibited to different degrees by D2O, diethylstilbestrol, suloctidil, vanadate, erythrosin B, cupric sulfate and dicyclohexylcarbodiimide. The same pattern of inhibition was found with the uptake of amino acids, adenine, uracil, and phosphate and sulfate anions. An increase of the acidification rate by dioctanoylglycerol also increased the rates of uptake of adenine and of glutamic acid. In contrast, a decrease of the membrane potential at pH 4.5 from a mean of -40 to -20 mV caused by 20 mm KC1 had no effect on the transport rates. The ATPase-deficient mutant S. cerevisiae pmal-105 showed a markedly lower uptake of all the above solutes as compared with the wild type, while its membrane potential and pH were unchanged.Other types of acidification (spontaneous upon suspension; K+ stimulated) did not affect the secondary uptake systems.  相似文献   

15.
In this study, high-betacyanin Suaeda salsa seedlings were developed and used to explore whether the betacyanin accumulation is related to salinity tolerance in S. salsa. After 8 days of culture, betacyanin content decreased markedly in both high-betacyanin S. salsa seedlings and the control under nonsalt stress, but the decreases were suppressed by NaCl treatments. Betacyanin content in high-betacyanin seedlings was much higher than that in the control throughout the salt treatments. Growth of S. salsa plants was significantly promoted by NaCl treatments, and the fresh weight of high-betacyanin seedlings was much higher than that of the control when grown in 400 mmol L−1 NaCl. Similar cell sap osmolarity and K+/Na+ ratios were observed in high-betacyanin seedlings and the control. No obvious differences in V-ATPase (tonoplast H+-ATPase) activity, leaf SOD (superoxide dismutase) activity, and total chloroplast SOD (including thylakoid-bound SOD and stroma SOD) activity were detected between high-betacyanin seedlings and the control under nonsalt stress conditions. However, V-ATPase hydrolytic activity increased dramatically in S. salsa seedlings when subjected to different levels of NaCl, and the increases in V-ATPase activity in high-betacyanin seedlings were much higher than that in the control. No clear pattern was observed for NaCl-dependent activity changes of P-ATPase (plasma membrane H+-ATPase) and V-PPase (tonoplast H+-pyrophosphatase). Similar changes were demonstrated in leaf SOD activity and chloroplast SOD activity under salt stress. Both leaf SOD activity and chloroplast SOD activity were markedly enhanced with the increase of NaCl or with time, especially thylakoid-bound SOD activity. Furthermore, the increases in chloroplast SOD activity and thylakoid-bound SOD activity were much higher in high-betacyanin seedlings than that in the control at different levels of NaCl treatment. The higher V-ATPase activity, chloroplastic SOD activity, and thylakoid-bound SOD activity demonstrated in high-betacyanin seedlings, but lower in the control, suggest that high-betacyanin S. salsa seedlings may have higher potential to be energized by the electrochemical gradient for ion uptake into the vacuole and to scavenge O2−• in situ produced in the chloroplasts, which may lead to higher salt tolerance than the control under salt stress. Thus, betacyanin may be involved in salt tolerance of S. salsa.  相似文献   

16.
Modulation of the current generated by the Na+/K+ pump by membrane potential and protein kinases was investigated in oocytes of Xenopus laevis. In addition to a positive slope region in the current-voltage (I-V) relationship of the Na+/K+ pump, a negative slope region has been described in these cells (Lafaire & Schwarz, 1986) and has been attributed to a voltage-dependent apparent Km value for pump stimulation by external [K+] (Rakowski et al., 1991). To study this feature in more detail, Xenopus oocytes were used for comparative analysis of the negative slope of the I-V relationship of the endogenous Na+/K+ pump and of the Na+/K+ pump of the electric organ of Torpedo californica expressed in the oocytes. The effects of stimulation of protein kinases A and C on the negative slope were also analyzed. To investigate the negative slope over a wide potential range, experiments were performed in Na(+)-free solution and in the presence of high concentrations of Ba2+ and tetraethylammonium, to block all nonpump related K(+)-sensitive currents. Pump currents and pump-mediated fluxes were determined as differences of currents or fluxes in solutions with and without extracellular K+. The voltage dependence of the Km value for stimulation of the Na+/K+ pump by external [K+] shows significant species differences. Over the entire voltage range from -140 to +20 mV, the Km value for the Na+/K+ pump of Torpedo electroplax is substantially higher than for the endogenous pump and exhibits more pronounced voltage dependence. For the Xenopus pump, the voltage dependence can be described by voltage-dependent stimulation by external [K+] and can be interpreted by voltage-dependent K+ binding, assuming that an effective charge between 0.37 and 0.56 of an elementary charge is moved in the electrical field. An analogous evaluation of the voltage dependence of the Torpedo pump requires the assumption of movement of two effective charges of 0.16 and 1.0 of an elementary charge. Application of 1,2-dioctanoyl-sn-glycerol (diC8, 10-50 microM), which is known to stimulate protein kinase C, reduces the maximum activity of the Xenopus pumps in the oocyte membrane by 40% and modulates the voltage dependence of K+ stimulation. For the endogenous Xenopus pump, the apparent effective charge increased from 0.37 to 0.51 of elementary charge and the apparent Km at 0 mV increased from 0.46 to 0.83 mM. For the Torpedo pump, one of the apparent effective charges increased from 1.0 to 2.5 of elementary charge.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The effect of fusicoccin (FC) on the activity of the PM H+-ATPase was investigated in a plasma membrane (PM) fraction from radish seedlings purified by the phase-partitioning procedure. FC stimulated the PM H+-ATPase activity by up to 100 %; the effect was essentially on Vmax with only a slight decrease of the apparent KM of the enzyme for ATP. FC-induced stimulation of the PM H+-ATPase was evident within the first minute and maximal within five minutes of membrane treatment with the toxin indicating that transmission of the signal from the activated receptor to the PM H+-ATPase is very rapid. Both FC-induced stimulation of the PM H+-ATPase and FC binding to its receptor decreased dramatically upon incubation of the membranes in ATPase assay medium at 33 °C in the absence of FC, due to the lability of the free FC receptor. FC-induced stimulation of the PM H+-ATPase was strongly pH dependent: absolute increase of activity was maximal at pH 7, while percent stimulation increased with the increase of pH up to pH 7.5; FC binding was scarcely influenced by pH in the pH range investigated. Taken as a whole, these results indicate that FC binding is a condition necessary, but not sufficient, for FC-induced stimulation of the PM H+-ATPase.  相似文献   

18.
Summary Differences in the activity and structure of the vacuolar H+-ATPase (V-ATPase, EC 3.6.1.3) were investigated in the C3/CAM intermediate plantKalanchoë blossfeldiana Poellnitz cv. Tom Thumb, with lower or higher expression of CAM, andHordeum vulgare cv. Carina, grown with or without 150 mM NaCl. InK. blossfeldiana ATP-hydrolysis and H+-transport activity were higher with higher expression of CAM than in plants with very weak CAM. This was mainly due to a larger amount of V-ATPase. Statistical analysis of the diameter of intramembrane particles (IMPs) on freeze-fractures of tonoplast vesicles showed that IMPs were larger in tonoplast vesicle preparations ofK. blossfeldiana with strong CAM expression (9.1 nm) than in preparations ofK. blossfeldiana with low CAM expression (7.3 nm). As there is evidence that the majority of IMPs on freeze-fractures of tonoplast vesicles corresponds to the V0 domain of V-ATPase, the higher activity of V-ATPase inK. blossfeldiana with stronger CAM could be a result of additional structural changes in its membrane-integral domain. The higher activity of V-ATPase inK. blossfeldiana with stronger CAM is discussed in relation to the requirement for a higher proton pumping capacity for nocturnal malate accumulation in the vacuole. The ATP-dependent H+-pumping activity inH. vulgare was higher under salt stress than in control plants, while the rates of ATP-hydrolysis and the size of IMPs were not affected by the salt treatment. The data presented here indicate that different mechanisms might increase the transport capacity of V-ATPase to meet the higher requirements of secondary active transport related to CAM expression and adaptation to salt stress.Abbrevations ATP adenosine triphosphate - CAM crassulacean acid metabolism - IMP intramembrane particles - V-ATPase vacuolar proton-translocating adenosine triphosphatase - V0 domain membrane-integral domain of V-ATPase - V1 domain membrane-peripheral domain of V-ATPase Dedicated to Prof. Dr. Eberhard Schnepf on the occasion of his retirement  相似文献   

19.
从显微和亚显微结构以及酸性磷酸酶组织化学等方面,比较研究了史氏蟾蜍(Bufo stejnegeri)、黑斑侧褶蛙(Pelophylax nigrontaculata)和中国林蛙(Rana chensinensis)肾实质,尤其是肾单位的结构特点.3种动物在非繁殖期活动于不同的生境类型,黑斑褶摺蛙属于水生类型,而史氏蟾蜍...  相似文献   

20.
β2-Adrenergic receptors (β2-AR) are low abundance, integral membrane proteins that mediate the effects of catecholamines at the cell surface. Whereas the processes governing desensitization of activated β2-ARs and their subsequent removal from the cell surface have been characterized in considerable detail, little is known about the mechanisms controlling trafficking of neo-synthesized receptors to the cell surface. Since the discovery of the signal peptide, the targeting of the integral membrane proteins to plasma membrane has been thought to be determined by structural features of the amino acid sequence alone. Here we report that localization of translationally silenced β2-AR mRNA to the peripheral cytoplasmic regions is critical for receptor localization to the plasma membrane. β2-AR mRNA is recognized by the nucleocytoplasmic shuttling RNA-binding protein HuR, which silences translational initiation while chaperoning the mRNA-protein complex to the cell periphery. When HuR expression is down-regulated, β2-AR mRNA translation is initiated prematurely in perinuclear polyribosomes, leading to overproduction of receptors but defective trafficking to the plasma membrane. Our results underscore the importance of the spatiotemporal relationship between β2-AR mRNA localization, translation, and trafficking to the plasma membrane, and establish a novel mechanism whereby G protein-coupled receptor (GPCR) responsiveness is regulated by RNA-based signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号