首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Prostate apoptosis response-4 (Par-4) was initially identified as a gene product up-regulated in prostate cancer cells undergoing apoptosis. In rat fibroblasts, coexpression of Par-4 and its interaction partner DAP-like kinase (Dlk, which is also known as zipper-interacting protein kinase [ZIPK]) induces relocation of the kinase from the nucleus to the actin filament system, followed by extensive myosin light chain (MLC) phosphorylation and induction of apoptosis. Our analyses show that the synergistic proapoptotic effect of Dlk/Par-4 complexes is abrogated when either Dlk/Par-4 interaction or Dlk kinase activity is impaired. In vitro phosphorylation assays employing Dlk and Par-4 phosphorylation mutants carrying alanine substitutions for residues S154, T155, S220, or S249, respectively, identified T155 as the major Par-4 phosphorylation site of Dlk. Coexpression experiments in REF52.2 cells revealed that phosphorylation of Par-4 at T155 by Dlk was essential for apoptosis induction in vivo. In the presence of the Par-4 T155A mutant Dlk was partially recruited to actin filaments but resided mainly in the nucleus. Consequently, apoptosis was not induced in Dlk/Par-4 T155A–expressing cells. In vivo phosphorylation of Par-4 at T155 was demonstrated with a phospho-specific Par-4 antibody. Our results demonstrate that Dlk-mediated phosphorylation of Par-4 at T155 is a crucial event in Dlk/Par-4-induced apoptosis.  相似文献   

3.
4.
5.
6.
Prostate apoptosis response-4 (Par-4) is a 38-kDa protein originally identified as a gene product upregulated in prostate cancer cells undergoing apoptosis. Cell death mediated by Par-4 and its interaction partner DAP like kinase (Dlk) is characterized by dramatic changes of the cytoskeleton. To uncover the role of the cytoskeleton in Par-4/Dlk-mediated apoptosis, we analyzed Par-4 for a direct association with cytoskeletal structures. Confocal fluorescence microscopy revealed that endogenous Par-4 is specifically associated with stress fibers in rat fibroblasts. In vitro cosedimentation analyses and in vivo FRET analyses showed that Par-4 directly binds to F-actin. Actin binding is mediated by the N-terminal 266 amino acids, but does not require the C-terminal region of Par-4 containing the leucine zipper and the death domain. Furthermore, the interaction of Par-4 with actin filaments leads to the formation of actin bundles in vitro and in vivo. In rat fibroblasts, this microfilament association is essential for the pro-apoptotic function of Par-4, since both disruption of the actin cytoskeleton by cytochalasin D treatment and overexpression of Par-4 constructs impaired in actin binding result in a significant decrease of apoptosis induction by Par-4 and Dlk. We propose a model, in which Par-4 recruits Dlk to stress fibers, leading to enhanced phosphorylation of the regulatory light chain of myosin II (MLC) and to the induction of apoptosis.  相似文献   

7.
Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm and is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis.  相似文献   

8.
G A Martin  G Bollag  F McCormick    A Abo 《The EMBO journal》1995,14(9):1970-1978
We identified three proteins in neutrophil cytosol of molecular size 65, 62 and 68 kDa which interact in a GTP-dependent manner with rac1 and CDC42Hs, but not with rho. Purification of p65 and subsequent peptide sequencing revealed identity to rat brain PAK65 and to yeast STE20 kinase domains. Based on these sequences we screened a human placenta library and cloned the full-length cDNA. The complete amino acid sequence of the human cDNA shares approximately identity with rat brain PAK65; within the kinase domain the human protein shares > 95% and approximately 63% identity with rat PAK65 and yeast STE20 respectively. The new human (h)PAK65 mRNA is ubiquitously expressed and hPAK65 protein is distinct from either human or rat brain PAK65. Recombinant hPAK65 exhibits identical specificity to the endogenous p65; both can bind rac1 and CDC42Hs in a GTP-dependent manner. The GTP-bound forms of rac1 and CDC42Hs induce autophosphorylation of hPAK65 on serine residues only. hPAK65 activated by either rac1 or CDC42Hs is phosphorylated on the same sites. Induction of hPAK65 autophosphorylation by rac1 or CDC42Hs stimulates hPAK65 kinase activity towards myelin basic protein and once hPAK65 is activated, rac1 or CDC42Hs are no longer required to keep it active. The affinities of rac/CDC42Hs for the non-phosphorylated and phosphorylated hPAK65 were similar. hPAK65 had only a marginal effect on the intrinsic GTPase activity of CDC42Hs, but significantly affected the binding and GAP activity of p190. These data are consistent with a model in which hPAK65 functions as an effector molecule for rac1 and CDC42Hs.  相似文献   

9.
The human proteins CDC5L (hCDC5) and PLRG1 are both highly conserved components of a multiprotein complex that is a subunit of the spliceosome. The respective homologues in yeast of both proteins are also associated with a sub-spliceosomal multiprotein complex that has been shown to be important for pre-mRNA splicing. We show that these two human proteins are associated in vivo and will interact directly in vitro. The regions containing the interacting domains in both proteins have been identified. Our results indicate that the carboxyl-terminal region of CDC5L and the WD40 domain of PLRG1 are essential for direct interaction between both proteins. By using a bacterially expressed mutant protein, containing the PLRG1 interacting domain in CDC5L, we show that the CDC5L-PLRG1 interaction in HeLa nuclear extract can be disrupted causing pre-mRNA splicing to be inhibited. Thus, a direct interaction between the CDC5L protein and PLRG1 in the CDC5L complex is essential for pre-mRNA splicing progression.  相似文献   

10.
NIPP1 is a regulatory subunit of a species of protein phosphatase-1 (PP1) that co-localizes with splicing factors in nuclear speckles. We report that the N-terminal third of NIPP1 largely consists of a Forkhead-associated (FHA) protein interaction domain, a known phosphopeptide interaction module. A yeast two-hybrid screening revealed an interaction between this domain and a human homolog (CDC5L) of the fission yeast protein cdc5, which is required for G(2)/M progression and pre-mRNA splicing. CDC5L and NIPP1 co-localized in nuclear speckles in COS-1 cells. Furthermore, an interaction between CDC5L, NIPP1, and PP1 in rat liver nuclear extracts could be demonstrated by co-immunoprecipitation and/or co-purification experiments. The binding of the FHA domain of NIPP1 to CDC5L was dependent on the phosphorylation of CDC5L, e.g. by cyclin E-Cdk2. When expressed in COS-1 or HeLa cells, the FHA domain of NIPP1 did not affect the number of cells in the G(2)/M transition. However, the FHA domain blocked beta-globin pre-mRNA splicing in nuclear extracts. A mutation in the FHA domain that abolished its interaction with CDC5L also canceled its anti-splicing effects. We suggest that NIPP1 either targets CDC5L or an associated protein for dephosphorylation by PP1 or serves as an anchor for both PP1 and CDC5L.  相似文献   

11.
12.
A cDNA homologue of Schizosaccharomyces pombe cdc5(+) was isolated from the basidiomycete mushroom Lentinula edodes and it was named Le.cdc5 cDNA. The deduced Le.CDC5 (842 amino acid residues) possessed N-terminal amino acid sequence highly homologous to those of S. pombe cdc5(+) gene product (Sp.cdc5p) and Sp.cdc5p-related proteins (SPCDC5RPs). The N-terminal 185 amino acid peptide of Le.CDC5 (Le.CDC5(1-185) peptide) produced in Escherichia coli was subjected to random binding-site selection analysis, revealing that Le.CDC5(1-185) peptide binds to a 7-bp sequence with the consensus sequence of 5'GCAATGT3' (complementary; 5'ACATTGC3'). Genomic binding-site (GBS) cloning by using Le.CDC5(1-185) peptide resulted in an isolation of the DNA fragment that contained three sets of 7-bp consensus-like sequence and TATA box. The Le.CDC5 protein contained two putative phosphorylation sites of cAMP-dependent protein kinase (A kinase) in its C-terminus. There exists a possible leucine zipper between the two phosphorylation sites. The Le.CDC5 fragment containing the two phosphorylation sites was actually phosphorylated by commercially available A kinase. Yeast two-hybrid analysis suggested the homodimerization of Le.CDC5 protein probably through the leucine zipper. Northern blot analysis showed that Le.cdc5 gene is most actively transcribed in primordia and small immature fruiting bodies of L. edodes, implying that Le.cdc5 may play a role in the beginning and early stage of fruiting-body formation.  相似文献   

13.
14.
CDC5 proteins are components of the pre-mRNA splicing complex and essential for cell cycle progression in yeast, plants and mammals. Human CDC5 is phosphorylated in a mitogen-dependent manner, and its association with the spliceosome is ATP-dependent. Examination of the amino acid sequence suggests that CDC5L may be phosphorylated at up to 28 potential consensus recognition sequences for known kinases, however, the identity of actual phosphorylation sites, their role in regulating CDC5L activity, and the kinases responsible for their phosphorylation have not previously been determined. Using two-dimensional phosphopeptide mapping and nanoelectrospray mass spectrometry, we now show that CDC5L is phosphorylated on at least nine sites in vivo. We demonstrate that while CDC5L is capable of forming homodimers in vitro and in vivo, neither homodimerization nor nuclear localization is dependent on phosphorylation at these sites. Using an in vitro splicing assay, we show that phosphorylation of CDC5L at threonines 411 and 438 within recognition sequences for CDKs are required for CDC5L-mediated pre-mRNA splicing. We also demonstrate that a specific inhibitor of CDK2, CVT-313, inhibits CDC5L phosphorylation in both in vitro kinase assays and in vivo radiolabeling experiments in cycling cells. These studies represent the first demonstration of a regulatory role for phosphorylation of CDC5L, and suggest that targeting these sites or the implicated kinases may provide novel strategies for treating disorders of unguarded cellular proliferation, such as cancer.  相似文献   

15.
16.
17.
18.
19.
Death-associated protein kinase (DAPk) family has emerged as a novel subfamily of pro-apoptotic serine/threonine kinase in the last 10 years. Although the functions of DAPk have been well documented, those of other family members remain uncertain. In this work, we characterized the expression pattern of human DAPk like kinase/Zipper interacting protein kinase (Dlk/ZIP kinase) in cancer specimens and cell lines. Dlk expression level was significantly down-regulated in cervical carcinoma cells compared to the surrounding non-tumorous tissues. Overexpression of Dlk led to cell morphological changes, suppressed colony formation and elevated cell apoptosis in cancer cell lines. Both the kinase activity and the cytoplasmic localization were required for its pro-apoptotic tendency. Mechanism exploration revealed that upon serum deprivation, Dlk overexpression could sensitize cells to apoptosis while overexpression of the kinase inactive mutant (Dlk-K42A) was able to rescue apoptotic cell death. Our data thus implicates that Dlk plays a positive role in modulating death-related signaling pathways. Reconstitution of Dlk expression might bring a potential therapeutic approach to cervical carcinoma treatments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号