首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was shown that preparations of bovine kidney gamma-glutamyl transferase with different degree of purity are phosphorylated by cAMP-dependent protein kinase. Phosphorylation is accompanied by a simultaneous decrease of both transferase and hydrolase activities of the enzyme. Hence, gamma-glutamyltransferase may serve as a substrate and target of regulation by cAMP-dependent protein kinase.  相似文献   

2.
Antibodies that recognize the alpha 2 delta and alpha 1 subunits of skeletal muscle L-type calcium channels have been used to investigate the subunit components and phosphorylation of omega-conotoxin (omega-CgTx)-sensitive N-type calcium channels from rabbit brain. Photolabeling of the N-type channel with a photoreactive derivative of 125I-omega-CgTx results in the identification of a single polypeptide of 240 kDa. MANC-1, a monoclonal antibody recognizing alpha 2 delta subunits of L-type calcium channels from skeletal muscle, immunoprecipitates the omega-CgTx-labeled 240-kDa polypeptide and approximately 6% of the digitonin-solubilized 125I-omega-CgTx-labeled N-type channels. MANC-1 also immunoprecipitates a phosphoprotein of 240 kDa that comigrates with 125I-omega-CgTx-labeled N-type calcium channels, but not with L-type calcium channels, in sucrose gradients. Both cAMP-dependent protein kinase and protein kinase C are effective in the phosphorylation of this polypeptide. Similar to the alpha 1 subunits of skeletal muscle L-type calcium channels, the immunoprecipitation of the 240-kDa phosphoprotein by MANC-1 is prevented by the detergent Triton X-100. Anti-CP-(1382-1400), an antipeptide antibody against a highly conserved segment of the alpha 1 subunits of calcium channels, immunoprecipitates the 240-kDa phosphopeptide in Triton X-100. The 240-kDa protein is phosphorylated to a stoichiometry of approximately 1 mol of phosphate/mol of omega-CgTx-binding N-type calcium channels by both cAMP-dependent protein kinase and protein kinase C. Our results show that the 240-kDa polypeptide is an alpha 1-like subunit of an omega-CgTx-sensitive N-type calcium channel. The N-type calcium channels containing this subunit are phosphorylated by cAMP-dependent protein kinase and protein kinase C and contain noncovalently associated alpha 1-like and alpha 2 delta-like subunits as part of their oligomeric structure.  相似文献   

3.
Partially purified smooth muscle (chicken gizzard) actomyosin contains two major substrates of cAMP-dependent protein kinase: a protein of Mr = 130,000, identified as the calmodulin-dependent myosin light chain kinase, and a protein of Mr = 42,000. This latter protein was shown by a variety of electrophoretic procedures to be actin. Purified smooth muscle actin also was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. The rate of phosphorylation of smooth muscle actin was significantly enhanced by depolyjerization of actin. A maximum of 2.0 mol phosphate could be incorporated per mol G-actin. Skeletal muscle F-actin was not significantly phosphorylated by protein kinase; however, skeletal G-actin is a substrate for the protein kinase although its rate of phosphorylation was significantly slower than that of smooth muscle G-actin.  相似文献   

4.
A M Edelman  E G Krebs 《FEBS letters》1982,138(2):293-298
Phosphatidylethanolamine (PE) was isolated from membranes of Bacillus megaterium. The organism was grown at 20°C and 55°C. The phase equilibria in PE/water systems were studied by 2H and 31P nuclear magnetic resonance, and by polarized light microscopy. PE isolated from B. megaterium grown at 20°C forms a lamellar liquid crystalline phase at the growth temperature, and at low water contents a cubic liquid crystalline phase at 58°C. The ratio iso/ante-iso acyl chains was 0.3 in this lipid. PE isolated from this organism grown at 55°C forms only a lamellar liquid crystalline phase up to at least 65°C. In this lipid the ratio iso/ante-iso acyl chains was 3.2.  相似文献   

5.
Phosphorylation of phospholipase C-gamma by cAMP-dependent protein kinase   总被引:9,自引:0,他引:9  
The mechanism by which cAMP modulates the activity of phosphoinositide-specific phospholipase C (PLC) was studied. Elevation of cAMP inhibited both basal and norepinephrine-stimulated phosphoinositide breakdown in C6Bu1 cells which contain at least three PLC isozymes, PLC-beta, PLC-gamma, and PLC-delta. Treatment of C6Bu1 cells with cAMP-elevating agents (cholera toxin, isobutylmethylxanthine, forskolin, and 8-bromo-cAMP) increased serine phosphate in PLC-gamma, but the phosphate contents in PLC-beta and PLC-delta were not changed. In addition, cAMP-dependent protein kinase selectively phosphorylated purified PLC-gamma among the three isozymes and added a single phosphate at serine. The serine phosphorylation, nevertheless, did not affect the activity of PLC-gamma in vitro. We propose, therefore, that the phosphorylation of PLC-gamma by cAMP-dependent protein kinase alters its interaction with putative modulatory proteins and leads to its inhibition.  相似文献   

6.
Catecholamines are known to influence the contractility of cardiac and skeletal muscles, presumably via cAMP-dependent phosphorylation of specific proteins. We have investigated the in vitro phosphorylation of myofibrillar proteins by the catalytic subunit of cAMP-dependent protein kinase of fast- and slow-twitch skeletal muscles and cardiac muscle with a view to gaining a better understanding of the biochemical basis of catecholamine effects on striated muscles. Incubation of canine red skeletal myofibrils with the isolated catalytic subunit of cAMP-dependent protein kinase and Mg-[gamma-32P]ATP led to the rapid incorporation of [32P]phosphate into five major protein substrates of subunit molecular weights (MWs) 143,000, 60,000, 42,000, 33,000, and 11,000. The 143,000 MW substrate was identified as C-protein; the 42,000 MW substrate is probably actin; the 33,000 MW substrate was shown not to be a subunit of tropomyosin and, like the 60,000 and 11,000 MW substrates, is an unidentified myofibrillar protein. Isolated canine red skeletal muscle C-protein as phosphorylated to the extent of approximately 0.5 mol Pi/mol C-protein. Rabbit white skeletal muscle and bovine cardiac muscle C-proteins were also phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, both in myofibrils and in the isolated state. Cardiac C-protein was phosphorylated to the extent of 5-6 mol Pi/mol C-protein, whereas rabbit white skeletal muscle C-protein was phosphorylated at the level of approximately 0.5 mol Pi/mol C-protein. As demonstrated earlier by others, C-protein of skeletal and cardiac muscles inhibited the actin-activated myosin Mg2+-ATPase activity at low ionic strength in a system reconstituted from the purified skeletal muscle contractile proteins (actin and myosin).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments.  相似文献   

8.
We have examined phosphorylation of the rat liver glucocorticoid receptor (GR) and GR-associated protein kinase (PK) activity in the immunopurified receptor preparations. Affinity labeling of hepatic cytosol with [3H]dexamethasone 21-mesylate showed a covalent association of the steroid with a 94 kDa protein. GR was immunopurified with antireceptor monoclonal antibody BuGR2 (Gametchu & Harrison, Endocrinology 114: 274–279, 1984) to near homogeneity. A 23° C incubation of the immunoprecipitated protein A-Sepharose adsorbed GR with [-32P]ATP, Mg2+ and the catalytic subunit of cAMP-dependent PK (cAMP-PK) from bovine heart, led to an incorporation of radioactivity in the 94 kDa protein. Phosphorylation of GR was not evident in the absence of the added kinase. Of the radioinert nucleotides (ATP, GTP, UTP or CTP) tested, only ATP successfully competed with [-32P]ATP demonstrating a nucleotide specific requirement for the phosphorylation of GR. Other divalent cations, such as Mn2+ or Ca2+, could not be substituted for Mg2+ during the phosphorylation reaction. Phosphorylation of GR was sensitive to the presence of the protein kinase inhibitor, H-8, an isoquinoline sulfonamide derivative. In addition, the incorporation of radioactivity into GR was both time- and temperature-dependent. The phosphorylation of GR by cAMP-PK was independent of the presence of hsp-90 and transformation state of the receptor. The results of this study demonstrate that GR is an effective substrate for action of cAMP-PK and that the immunopurified protein A-Sepharose adsorbed GR lacks intrinsic kinase activity but can be conveniently used for the characterization of the phosphorylation reaction in the presence of an exogenous kinase.Abbreviations BUGR2 anti-GR monoclonal antibody - cAMP-PK cAMP-dependent protein kinase - DMSO dimethyl sulfoxide - EDTA ethylenediamine tetra acetic acid - GR glucocorticoid receptor - H-8 Isoquinoline sulfonamide derivative - hsp-90 90 kDa heat-shock protein - PMSF phenylmethylsulfonyl fluoride - PR progesterone receptor - NaF sodium fluoride - SDS sodium dodecyl sulfate - SDS-PAGE SDS-polyacrylamide gel electrophoresis - SR steroid receptor - TA triamcinolone acetonide  相似文献   

9.
Calmodulin-dependent protein kinase IV (CaM-kinase IV), a neuronal calmodulin-dependent multifunctional protein kinase, undergoes autophosphorylation in response to Ca2+ and calmodulin, resulting in activation of the enzyme (Frangakis et al. (1991) J. Biol. Chem. 266, 11309-11316). In contrast, the enzyme was phosphorylated by cAMP-dependent protein kinase, leading to a decrease in the enzyme activity. Thus, the results suggest differential regulation of CaM-kinase IV by two representative second messengers, Ca2+ and cAMP.  相似文献   

10.
Catch in certain molluscan muscles is released by an increase in cAMP, and it was suggested that the target of cAMP-dependent protein kinase (PKA) is the high molecular weight protein twitchin [Siegman, M. J., Funabara, J., Kinoshita, S., Watabe, S., Hartshorne, D. J., and Butler, T. M. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 5384-5388]. This study was carried out to investigate the phosphorylation of twitchin by PKA. Twitchin was isolated from Mytilus catch muscles and was phosphorylated by PKA to a stoichiometry of about 3 mol of P/mol of twitchin. There was no evidence of twitchin autophosphorylation. Two phosphorylated peptides were isolated and sequenced, termed D1 and D2. Additional cDNA sequence for twitchin was obtained, and the D2 site was located at the C-terminal side of the putative kinase domain in a linker region between two immunoglobulin C2 repeats. Excess PKA substrates, e.g., D1 and D2, blocked the reduction in force on addition of cAMP, confirming the role for PKA in regulating catch. Papain proteolysis of (32)P-labeled twitchin from permeabilized muscles showed that the D1 site represented about 50% of the (32)P labeling. Proteolysis of in-situ twitchin with thermolysin suggested that the D1 and D2 sites were at the N- and C-terminal ends of the molecule, respectively. Thermolysin proteolysis also indicated that D1 and D2 were major sites of phosphorylation by PKA. The direct phosphorylation of twitchin by PKA is consistent with a regulatory role for twitchin in the catch mechanism and probably involves phosphorylation at the D1 and D2 sites.  相似文献   

11.
Phosphorylation of immunopurified chicken oviduct progesterone receptor (PR) was studied in intact cells and under cell-free conditions. Cytosol PR was isolated by incubation with anti-PR monoclonal antibody alpha PR22 adsorbed to protein A-Sepharose and suspended in a reaction mixture containing 10 mM Mg2+, 0.1 mM [gamma-32P]ATP, and the catalytic subunit of cAMP-dependent protein kinase (cAMP-PK) from bovine heart. All three major proteins of avian PR (PR-A, 79 kDa; PR-B, 110 kDa; 90 kDa) incorporated 32P-radioactivity on serine residues. The phosphorylation reaction was inhibited by synthetic inhibitors of protein kinases, H-8 and 20-residue peptide IP20. A 40 degrees C preexposure of PR oligomer increased phosphorylation of the 90-kDa protein, known to be a heat-shock protein (hsp-90). The extent of the phosphorylation reaction was temperature-dependent as the 32P-incorporation into PR-A and PR-B increased gradually, showing a maximum at 37 degrees C. Multiple phosphopeptides (4-7) were resolved by two-dimensional electrophoresis chromatography following cleavage of 32P-labeled peptides with trypsin. Both A and B forms of receptor showed similar phosphorylation patterns with B receptor digestion exhibiting two to three additional peptides. Under physiological conditions, preincubation of oviduct mince with forskolin, a regulator of intracellular cAMP levels, caused a greater extent of phosphorylation of PR-A and PR-B proteins. The results of this study demonstrate that chicken oviduct PR is an excellent substrate for the action of cAMP-PK in vitro and that this enzyme may be a physiological regulator of progesterone action in the oviduct.  相似文献   

12.
The effects of cAMP-dependent protein kinase (cAMP-PK) phosphorylation on the degradation of the microtubule-associated protein tau by calpain were studied. Purified bovine brain tau that had been phosphorylated by cAMP-PK had a slower migration pattern on sodium dodecyl sulfate-polyacrylamide gels and a more acidic, less heterogeneous pattern on two-dimensional, nonequilibrium pH gradient electrophoresis (NEPHGE) gels compared with untreated tau. Phosphorylation of tau by cAMP-PK significantly inhibited its proteolysis by calpain compared with untreated tau. To our knowledge this is the first demonstration that phosphorylation of tau by a specific kinase results in increased resistance to hydrolysis by calpain. Tau dephosphorylated by alkaline phosphatase migrated more rapidly on sodium dodecyl sulfate-polyacrylamide gels and also showed an altered two-dimensional NEPHGE pattern. Dephosphorylation of tau had no effect on its susceptibility to calpain proteolysis, indicating that regulation of the susceptibility to calpain hydrolysis is due to the phosphorylation of a specific site(s). These results suggest a role for phosphorylation in regulating the degradation of tau. Abnormal phosphorylation could result in a protease-resistant tau population which may contribute to the formation of paired helical filaments in Alzheimer's disease.  相似文献   

13.
Acetyl-CoA carboxylase (ACC) is regarded in liver and adipose tissue to be the rate-limiting enzyme for fatty acid biosynthesis; however, in heart tissue it functions as a regulator of fatty acid oxidation. Because the control of fatty acid oxidation is important to the functioning myocardium, the regulation of ACC is a key issue. Two cardiac isoforms of ACC exist, with molecular masses of 265 kDa and 280 kDa (ACC265 and ACC280). In this study, these proteins were purified from rat heart and used in subsequent phosphorylation and immunoprecipitation experiments. Our results demonstrate that 5' AMP-activated protein kinase (AMPK) is able to phosphorylate both ACC265 and ACC280, resulting in an almost complete loss of ACC activity. Although cAMP-dependent protein kinase phosphorylated only ACC280, a dramatic loss of ACC activity was still observed, suggesting that ACC280 contributes most, if not all, of the total heart ACC activity. ACC280 and ACC265 copurified under all experimental conditions, and purification of heart ACC also resulted in the specific copurification of the alpha2 isoform of the catalytic subunit of AMPK. Although both catalytic subunits of AMPK were expressed in crude heart homogenates, our results suggest that alpha2, and not alpha1, is the dominant isoform of AMPK catalytic subunit regulating ACC in the heart. Immunoprecipitation studies demonstrated that specific antibodies for both ACC265 and ACC280 were able to coimmunoprecipitate the alternate isoform along with the alpha2 isoform of AMPK. Taken together, the immunoprecipitation and the purification studies suggest that the two isoforms of ACC in the heart exist in a heterodimeric structure, and that this structure is tightly associated with the alpha2 subunit of AMPK.  相似文献   

14.
Based on RII autophosphorylation, photoaffinity labeling with 8-N3[32P]cAMP, and Western blot analysis we have identified the RII isoform found in rabbit corpora lutea as RII beta. The RII beta subunit found in rabbit corpora lutea differs from the RII beta found in rat follicles and corpora lutea in that it migrates at Mr 52,500 on SDS-PAGE and shifts to Mr 53,000 when phosphorylated.  相似文献   

15.
A monoclonal antibody was used to quantitate changes in the extent of phosphorylation of the type II regulatory subunit of cAMP-dependent protein kinase in intact bovine tracheal smooth muscle. The autophosphorylated and nonphosphorylated forms of the regulatory subunit (RII) were separated in sodium dodecyl sulfate-polyacrylamide gels and identified by immunoblot analysis. Addition of cAMP to tissue extracts resulted in rapid dephosphorylation of RII (t 1/2 = 20s at 4 degrees C) while addition of MgATP caused complete conversion to the phosphorylated form. Under basal conditions, 56% of RII in intact muscle was phosphorylated when the tissue was homogenized under conditions which fully inhibit protein kinase and phosphatase activities. Incubation with isoproterenol caused a dose-dependent decrease in the phosphorylation state of RII (EC50 = 5 X 10(-8) M). Incubation with high concentrations of isoproterenol, 1-methyl-3-isobutylxanthine, or forskolin caused maximal decreases in the phosphorylated form to 12-18% of the total RII. The effect of isoproterenol was rapid (t 1/2 = 15 s at 37 degrees C), reversible, and could be blocked with the antagonist propranolol. Contraction of the smooth muscle with K+ or low (less than 1 microM) concentrations of carbachol had no effect on the phosphorylation level. A decrease in the basal phosphorylation level to 41% was observed with 10 microM carbachol which was additive with the dephosphorylation produced by isoproterenol. The time course of isoproterenol-induced dephosphorylation of RII paralleled that of muscle relaxation, consistent with a role of cAMP-dependent protein kinase activation in relaxation of smooth muscle.  相似文献   

16.
We have examined the potential for using calf uterine progesterone receptor (PR) as a substrate for phosphorylation by cAMP-dependent protein kinase (cAMP-PK), PR was found to interact with anti-PR monoclonal antibody alpha PR6 (Sullivan et al., 1986), which was to immunopurify the receptor. Protein staining of the purified preparation revealed the presence of two major bands corresponding to 114 kDa and 90 kDa peptides; only 114 kDa peptide could be photoaffinity-labeled with R5020. The 90 kDa peptide co-migrated with 90 kDa heat shock protein (hsp-90) precipitated by anti-hsp-90 monoclonal antibody AC88 (Riehl et al., 1985). Incubation of the immunopurified protein-A-Sepharose-adsorbed PR with the catalytic subunit of cAMP-PK in the presence of gamma-[32P]ATP and divalent cations resulted in a Mg++-dependent incorporation of 32P-radioactivity into both the 114 kDa and the hsp-90 peptides. Small 32P-incorporation was also seen in the 114 kDa peptide in the presence of Mn++. A 60 degrees C preincubation of immunopurified PR increased the extent of phosphorylation of the hsp-90 peptide. A pretreatment with alkaline phosphatase reduced the ability of PR to act as a substrate while the steroid occupancy of PR appeared to enhance the phosphorylation of the 114 kDa peptide. The differential cation requirement for the phosphorylation of 114 kDa and hsp-90 peptides and a selective hormone-dependent increase in the phosphorylation of the 114 kDa peptide suggest a possible role of phosphorylation in mediating progesterone action in the calf uterus.  相似文献   

17.
The phosphorylation of canine cardiac and skeletal muscle ryanodine receptors by the catalytic subunit of cAMP-dependent protein kinase has been studied. A high-molecular-weight protein (Mr 400,000) in cardiac microsomes was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. A monoclonal antibody against the cardiac ryanodine receptor immunoprecipitated this phosphoprotein. In contrast, high-molecular-weight proteins (Mr 400,000-450,000) in canine skeletal microsomes isolated from extensor carpi radialis (fast) or superficial digitalis flexor (slow) muscle fibers were not significantly phosphorylated. In agreement with these findings, the ryanodine receptor purified from cardiac microsomes was also phosphorylated by cAMP-dependent protein kinase. Phosphorylation of the cardiac ryanodine receptor in microsomal and purified preparations occurred at the ratio of about one mol per mol of ryanodine-binding site. Upon phosphorylation of the cardiac ryanodine receptor, the levels of [3H]ryanodine binding at saturating concentrations of this ligand increased by up to 30% in the presence of Ca2+ concentrations above 1 microM in both cardiac microsomes and the purified cardiac ryanodine receptor preparation. In contrast, the Ca2+ concentration dependence of [3H]ryanodine binding did not change significantly. These results suggest that phosphorylation of the ryanodine receptor by cAMP-dependent protein kinase may be an important regulatory mechanism for the calcium release channel function in the cardiac sarcoplasmic reticulum.  相似文献   

18.
The tyrosine-specific src kinase and the catalytic subunit of bovine heart adenosine 3',5'-cyclic monophosphate-dependent protein kinase phosphorylated glycerol when incubated with [gamma-32P]Mg-ATP. The product was detected by thin layer chromatography. The formation of glycerol phosphate by both enzymes was independent of the presence of a protein substrate (casein). The results show that glycerol phosphorylation is not a unique property of the src transforming protein. Because the product was only detected when high glycerol concentrations (approximately 0.1 M) were used, it is unlikely that either enzyme functions as a glycerol kinase in vivo.  相似文献   

19.
HIP/PAP is a C-type lectin overexpressed in hepatocellular carcinoma (HCC). Pleiotropic biological activities have been ascribed to this protein, but little is known about the function of HIP/PAP in the liver. In this study, therefore, we searched for proteins interacting with HIP/PAP by screening a HCC cDNA expression library. We have identified the RII alpha regulatory subunit of cAMP-dependent protein kinase (PKA) as a partner of HIP/PAP. HIP/PAP and RII alpha were coimmunoprecipitated in HIP/PAP expressing cells. The biological relevance of the interaction between these proteins was established by demonstrating, using fractionation methods, that they are located in a same subcellular compartment. Indeed, though HIP/PAP is a protein secreted via the Golgi apparatus we showed that a fraction of HIP/PAP escaped the secretory apparatus and was recovered in the cytosol. Basal PKA activity was increased in HIP/PAP expressing cells, suggesting that HIP/PAP may alter PKA signalling. Indeed, we showed, using a thymidine kinase-luciferase reporter plasmid in which a cAMP responsive element was inserted upstream of the thymidine kinase promoter, that luciferase activity was enhanced in HIP/PAP expressing cells. Thus our findings suggest a novel mechanism for the biological activity of the HIP/PAP lectin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号