首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The Vibrio cholerae ghost (rVCG) platform is an effective carrier and delivery system for designing efficacious Chlamydia vaccines. We investigated whether CTA2B, the nontoxic derivative of cholera toxin, can augment protective immunity conferred by an rVCG-based chlamydial vaccine and enhance cross-protection against heterologous chlamydial strains. An rVCG vaccine coexpressing chlamydial major outer membrane protein and CTA2B was genetically constructed and antigens were targeted to the inner membrane of V. cholerae before ghost production by gene E -mediated lysis. Effective immunomodulation by CTA2B was demonstrated by the ability of the vaccine construct to enhance the activation and maturation of dendritic cells in vitro . Also, C57BL/6 mice immunized via mucosal and systemic routes showed increased specific mucosal and systemic antibody and T-helper type-1 (Th1) responses, irrespective of the route. The enhanced production of IFN-γ, but not IL-4 by genital mucosal and splenic T cells, indicated a predominantly Th1 response. Clearance of the Chlamydia muridarum vaginal infection was significantly enhanced by codelivery of the vaccine with CTA2B, with the intravaginal route showing a moderate advantage. These results indicate that the rVCG-based vaccine is capable of inducing cross-protection against heterologous chlamydial serovars and that incorporation of mucosal adjuvants, such as CTA2B in the rVCG delivery platform, may enhance protective immunity.  相似文献   

3.
Mucosally active vaccine adjuvants that will prime a full range of local and systemic immune responses against defined antigenic epitopes are much needed. Cholera toxin and lipophilic immune stimulating complexes (ISCOMS) containing Quil A can both act as adjuvants for orally administered Ags, possibly by targeting different APCs. Recently, we have been successful in separating the adjuvant and toxic effects of cholera toxin by constructing a gene fusion protein, CTA1-DD, that combines the enzymatically active CTA1-subunit with a B cell-targeting moiety, D, derived from Staphylococcus aureus protein A. Here we have extended this work by combining CTA1-DD with ISCOMS, which normally target dendritic cells and/or macrophages. ISCOMS containing a fusion protein comprising the OVA(323-339) peptide epitope linked to CTA1-DD were highly immunogenic when given in nanogram doses by the s.c., oral, or nasal routes, inducing a wide range of T cell-dependent immune responses. In contrast, ISCOMS containing the enzymatically inactive CTA1-R7K-DD mutant protein were much less effective, indicating that at least part of the activity of the combined vector requires the ADP-ribosylating property of CTA1. No toxicity was observed by any route. To our knowledge, this is the first report on the successful combination of two mechanistically different principles of adjuvant action. We conclude that rationally designed vectors consisting of CTA1-DD and ISCOMS may provide a novel strategy for the generation of potent and safe mucosal vaccines.  相似文献   

4.
We recently developed a novel immunomodulating gene fusion protein, CTA1-DD, that combines the ADP-ribosylating ability of cholera toxin (CT) with a dimer of an Ig-binding fragment, D, of Staphylococcus aureus protein A. The CTA1-DD adjuvant was found to be nontoxic and greatly augmented T cell-dependent responses to soluble protein Ags after systemic as well as mucosal immunizations. Here we show that CTA1-DD does not appear to form immune complexes or bind to soluble Ig following injections, but, rather, it binds directly to B cells of all isotypes, including naive IgD+ cells. No binding was observed to macrophages or dendritic cells. Immunizations in FcepsilonR (common FcRgamma-chain)- and FcgammaRII-deficient mice demonstrated that CTA1-DD exerted unaltered enhancing effects, indicating that FcgammaR-expressing cells are not required for the adjuvant function. Whereas CT failed to augment Ab responses to high m.w. dextran B512 in athymic mice, CTA1-DD was highly efficient, demonstrating that T cell-independent responses were also enhanced by this adjuvant. In normal mice both CT and CTA1-DD, but not the enzymatically inactive CTA1-R7K-DD mutant, were efficient enhancers of T cell-dependent as well as T cell-independent responses, and both promoted germinal center formation following immunizations. Although CT augmented apoptosis in Ag receptor-activated B cells, CTA1-DD strongly counteracted apoptosis by inducing Bcl-2 in a dose-dependent manner, a mechanism that was independent of the CD19 coreceptor. However, in the presence of CD40 stimulation, apoptosis was low and unaffected by CT, suggesting that the adjuvant effect of CT is dependent on the presence of activated CD40 ligand-expressing T cells.  相似文献   

5.
The cholera toxin A1 (CTA1)-DD/QuilA-containing, immune-stimulating complex (ISCOM) vector is a rationally designed mucosal adjuvant that greatly potentiates humoral and cellular immune responses. It was developed to incorporate the distinctive properties of either adjuvant alone in a combination that exerted additive enhancing effects on mucosal immune responses. In this study we demonstrate that CTA1-DD and an unrelated Ag can be incorporated together into the ISCOM, resulting in greatly augmented immunogenicity of the Ag. To demonstrate its relevance for protection against infectious diseases, we tested the vector incorporating PR8 Ag from the influenza virus. After intranasal immunization we found that the immunogenicity of the PR8 proteins were significantly augmented by a mechanism that was enzyme dependent, because the presence of the enzymatically inactive CTA1R7K-DD mutant largely failed to enhance the response over that seen with ISCOMs alone. The combined vector was a highly effective enhancer of a broad range of immune responses, including specific serum Abs and balanced Th1 and Th2 CD4(+) T cell priming as well as a strong mucosal IgA response. Unlike unmodified ISCOMs, Ag incorporated into the combined vector could be presented by B cells in vitro and in vivo as well as by dendritic cells; it also accumulated in B cell follicles of draining lymph nodes when given s.c. and stimulated much enhanced germinal center reactions. Strikingly, the enhanced adjuvant activity of the combined vector was absent in B cell-deficient mice, supporting the idea that B cells are important for the adjuvant effects of the combined CTA1-DD/ISCOM vector.  相似文献   

6.
The in vivo mechanisms of action of most vaccine adjuvants are poorly understood. In this study, we present data in mice that reveal a series of critical interactions between the cholera toxin (CT) adjuvant and the dendritic cells (DC) of the splenic marginal zone (MZ) that lead to effective priming of an immune response. For the first time, we have followed adjuvant targeting of MZ DC in vivo. We used CT-conjugated OVA and found that the Ag selectively accumulated in MZ DC following i.v. injections. The uptake of Ag into DC was GM1 ganglioside receptor dependent and mediated by the B subunit of CT (CTB). The targeted MZ DC were quite unique in their phenotype: CD11c(+), CD8alpha(-), CD11b(-), B220(-), and expressing intermediate or low levels of MHC class II and DEC205. Whereas CTB only delivered the Ag to MZ DC, the ADP-ribosyltransferase activity of CT was required for the maturation and migration of DC to the T cell zone, where these cells distinctly up-regulated CD86, but not CD80. This interaction appeared to instruct Ag-specific CD4(+) T cells to move into the B cell follicle and strongly support germinal center formations. These events may explain why CT-conjugated Ag is substantially more immunogenic than Ag admixed with soluble CT and why CTB-conjugated Ag can tolerize immune responses when given orally or at other mucosal sites.  相似文献   

7.
Mucosal immunization with soluble protein Ag alone may induce Ag-specific tolerance, whereas mucosal immunization with Ag in the presence of a mucosal adjuvant may induce Ag-specific systemic and mucosal humoral and cell-mediated immune responses. The most widely used and studied mucosal adjuvant is cholera toxin (CT). Although the mechanism of adjuvanticity of CT is not completely understood, it is known that CT induces mucosal epithelial cells to produce the proinflammatory cytokines IL-1, IL-6, and IL-8 and up-regulates macrophage production of IL-1 and the costimulatory molecule B7.2. Because IL-1 may duplicate many of the activities of CT, we evaluated IL-1alpha and IL-1beta for their ability to serve as mucosal adjuvants when intranasally administered with soluble protein Ags. IL-1alpha and IL-1beta were as effective as CT for the induction of Ag-specific serum IgG, vaginal IgG and IgA, systemic delayed-type hypersensitivity, and lymphocyte proliferative responses when intranasally administered with soluble protein Ag. Our results indicate that IL-1alpha and IL-1beta may be useful as mucosal vaccine adjuvants. Such an adjuvant may be useful, and possibly required, for vaccine-mediated protection against pathogens that infect via the mucosal surfaces of the host such as HIV.  相似文献   

8.
Oral delivery of a large dose or prolonged feeding of protein Ags induce systemic unresponsiveness most often characterized as reduced IgG and IgE Ab- and Ag-specific CD4(+) T cell responses. It remains controversial whether oral tolerance extends to diminished mucosal IgA responses in the gastrointestinal tract. To address this issue, mice were given a high oral dose of OVA or PBS and then orally immunized with OVA and cholera toxin as mucosal adjuvant, and both systemic and mucosal immune responses were assessed. OVA-specific serum IgG and IgA and mucosal IgA Ab levels were markedly reduced in mice given OVA orally compared with mice fed PBS. Furthermore, when OVA-specific Ab-forming cells (AFCs) in both systemic and mucosa-associated tissues were examined, IgG AFCs in the spleen and IgA AFCs in the gastrointestinal tract lamina propria of mice given OVA orally were dramatically decreased. Furthermore, marked reductions in OVA-specific CD4(+) T cell proliferative and cytokine responses in spleen and Peyer's patches were seen in mice given oral OVA but were unaffected in PBS-fed mice. We conclude that high oral doses of protein induce both mucosal and systemic unresponsiveness and that use of mucosal adjuvants that induce both parenteral and mucosal immunity may be a better way to assess oral tolerance.  相似文献   

9.
Mucosal, but not parenteral, immunization induces immune responses in both systemic and secretory immune compartments. Thus, despite the reports that Abs to the protective Ag of anthrax (PA) have both anti-toxin and anti-spore activities, a vaccine administered parenterally, such as the aluminum-adsorbed anthrax vaccine, will most likely not induce the needed mucosal immunity to efficiently protect the initial site of infection with inhaled anthrax spores. We therefore took a nasal anthrax vaccine approach to attempt to induce protective immunity both at mucosal surfaces and in the peripheral immune compartment. Mice nasally immunized with recombinant PA (rPA) and cholera toxin (CT) as mucosal adjuvant developed high plasma PA-specific IgG Ab responses. Plasma IgA Abs as well as secretory IgA anti-PA Abs in saliva, nasal washes, and fecal extracts were also induced when a higher dose of rPA was used. The anti-PA IgG subclass responses to nasal rPA plus CT consisted of IgG1 and IgG2b Abs. A more balanced profile of IgG subclasses with IgG1, IgG2a, and IgG2b Abs was seen when rPA was given with a CpG oligodeoxynucleotide as adjuvant, suggesting a role for the adjuvants in the nasal rPA-induced immunity. The PA-specific CD4(+) T cells from mice nasally immunized with rPA and CT as adjuvant secreted low levels of CD4(+) Th1-type cytokines in vitro, but exhibited elevated IL-4, IL-5, IL-6, and IL-10 responses. The functional significance of the anti-PA Ab responses was established in an in vitro macrophage toxicity assay in which both plasma and mucosal secretions neutralized the lethal effects of Bacillus anthracis toxin.  相似文献   

10.
A mucosal vaccine against Helicobacter pylori infection could help prevent gastric cancers and peptic ulcers. While previous attempts to develop such a vaccine have largely failed because of the requirement for safe and effective adjuvants or large amounts of well defined antigens, we have taken a unique approach to combining our strong mucosal CTA1-DD adjuvant with selected peptides from urease B (UreB). The protective efficacy of the selected peptides together with cholera toxin (CT) was first confirmed. However, CT is a strong adjuvant that unfortunately is precluded from clinical use because of its toxicity. To circumvent this problem we have developed a derivative of CT, the CTA1-DD adjuvant, that has been found safe in non-human primates and equally effective compared to CT when used intranasally. We genetically fused the selected peptides into the CTA1-DD plasmid and found after intranasal immunizations of Balb/c mice using purified CTA1-DD with 3 copies of an H. pylori urease T cell epitope (CTA1-UreB3T-DD) that significant protection was stimulated against a live challenge infection. Protection was, however, weaker than with the gold standard, bacterial lysate+CT, but considering that we only used a single epitope in nanomolar amounts the results convey optimism. Protection was associated with enhanced Th1 and Th17 immunity, but immunizations in IL-17A-deficient mice revealed that IL-17 may not be essential for protection. Taken together, we have provided evidence for the rational design of an effective mucosal subcomponent vaccine against H. pylori infection based on well selected protective epitopes from relevant antigens incorporated into the CTA1-DD adjuvant platform.  相似文献   

11.
Efficient induction of mucosal immunity usually employs nasal or oral vaccination while parenteral immunization generally is ineffective at generating mucosal immune responses. This relates to the unique ability of resident mucosal dendritic cells (DC) to induce IgA switching and to imprint mucosa-specific homing receptors on lymphocytes. Based on the well-established plasticity of the DC system, this study sought to investigate whether peripheral DC could be modulated toward "mucosa-type" DC by treatment with immunomodulatory, and therefore potentially adjuvant-like, factors. In this study, we show that monocyte-derived DCs pretreated with the vitamin A derivative all-trans retinoic acid (RA) indeed acquired several attributes characteristic of mucosal DC: secretion of TGF-beta and IL-6 and the capacity to augment mucosal homing receptor expression and IgA responses in cocultured lymphocytes. Addition of a TGF-beta-neutralizing Ab to cocultures significantly inhibited alpha4beta7 integrin, but not CCR9 mRNA expression by the lymphocytes. Both alpha4beta7 integrin and CCR9 mRNA expression, but not IgA production, were suppressed in the presence of a RA receptor antagonist. None of the observed effects on the lymphocytes were influenced by citral, a retinal dehydrogenase inhibitor, arguing against a role for de novo-synthesized RA. Collectively, our findings identified a novel role for RA as a mucosal immune modulator targeting DC. Our results further demonstrate that DC can act as efficient carriers of RA at least in vitro. Consequently, RA targeting of DC shows potential for promoting vaccine-induced mucosal immune responses via a parenteral route of immunization.  相似文献   

12.
In this study, we show that costimulation required for mucosal IgA responses is strikingly different from that needed for systemic responses, including serum IgA. Following oral immunization with cholera toxin (CT) adjuvant we found that whereas CTLA4-H1 transgenic mice largely failed to respond, CD28-/- mice developed near normal gut mucosal IgA responses but poor serum Ab responses. The local IgA response was functional in that strong antitoxic protection developed in CT-immunized CD28-/- mice. This was in spite of the fact that no germinal centers (GC) were observed in the Peyer's patches, spleen, or other peripheral lymph nodes. Moreover, significant somatic hypermutation was found in isolated IgA plasma cells from gut lamina propria of CD28-/- mice. Thus, differentiation to functional gut mucosal IgA responses against T cell-dependent Ags does not require signaling through CD28 and can be independent of GC formations and isotype-switching in Peyer's patches. By contrast, serum IgA responses, similar to IgG-responses, are dependent on GC and CD28. However, both local and systemic responses are impaired in CTLA4-Hgamma1 transgenic mice, indicating that mucosal IgA responses are dependent on the B7-family ligands, but require signaling via CTLA4 or more likely a third related receptor. Therefore, T-B cell interactions leading to mucosal as opposed to serum IgA responses are uniquely regulated and appear to represent separate events. Although CT is known to strongly up-regulate B7-molecules, we have demonstrated that it acts as a potent mucosal adjuvant in the absence of CD28, suggesting that alternative costimulatory pathways are involved.  相似文献   

13.
Modulating dendritic cells to optimize mucosal immunization protocols.   总被引:14,自引:0,他引:14  
Oral administration of soluble protein Ag induces tolerance, a phenomenon that has hampered mucosal vaccine design. To provoke active immunity, orally administered Ag must be fed together with a mucosal adjuvant such as cholera toxin (CT). Unfortunately, CT is not suitable for clinical use because of its associated toxicity. There is, therefore, a need to develop alternative mucosal immunization regimens. Here we have attempted to alter the intrinsically tolerogenic nature of the intestine and improve immunization potential by expanding and activating intestinal APC in vivo. Previous studies have indicated that intestinal dendritic cells (DC) present oral Ag, but do so in a tolerogenic manner. In the present study we investigated whether DC can be converted from tolerogenic into immunogenic APC by treating mice with Flt3 ligand (Flt3L), a DC growth factor, and then immunizing with CT. We observed increased local and systemic responses to CT in the presence of elevated numbers of intestinal DC. In parallel, CT induced up-regulation of CD80 and CD86 on these Flt3L-expanded DC. In an attempt to develop a toxin-free adjuvant system, we investigated whether IL-1 could be used as an alternative DC-activating stimulus. Using a combination of Flt3L and IL-1alpha, we observed a potent active response to fed soluble Ag, rather than the tolerogenic response normally observed. These data suggest that Flt3L-expanded DC are well positioned to regulate intestinal responses depending on the presence or the absence of inflammatory signals. Flt3L may therefore be a reagent useful for the design of mucosal immunization strategies.  相似文献   

14.
Eo SK  Lee S  Chun S  Rouse BT 《Journal of virology》2001,75(2):569-578
In this study, we examined the effects of murine chemokine DNA, as genetic adjuvants given mucosally, on the systemic and distal mucosal immune responses to plasmid DNA encoding gB of herpes simplex virus (HSV) by using the mouse model. The CC chemokines macrophage inflammatory protein 1beta (MIP-1beta) and monocyte chemotactic protein 1 (MCP-1) biased the immunity to the Th2-type pattern as judged by the ratio of immunoglobulin isotypes and interleukin-4 cytokine levels produced by CD4(+) T cells. The CXC chemokine MIP-2 and the CC chemokine MIP-1alpha, however, mounted immune responses of the Th1-type pattern, and such a response rendered recipients more resistant to HSV vaginal infection. In addition, MIP-1alpha appeared to act via the upregulation of antigen-presenting cell (APC) function and the expression of costimulatory molecules (B7-1 and B7-2), whereas MIP-2 enhanced Th1-type CD4(+) T-cell-mediated adaptive immunity by increasing gamma interferon secretion from activated NK cells. Our results emphasize the value of using the mucosal route to administer DNA modulators such as chemokines that function as adjuvants by regulating the activity of innate immunity. Our findings provide new insight into the value of CXC and CC chemokines, which act on different innate cellular components as the linkage signals between innate and adaptive immunity in mucosal DNA vaccination.  相似文献   

15.
The intranasal administration of influenza hemagglutinin (HA) vaccine with Surfacten, a modified pulmonary surfactant free of antigenic c-type lectins, as a mucosal adjuvant induced the highest protective mucosal immunity in the airway. The intranasal immunization of mice with HA vaccine (0.2 microg)-Surfacten (0.2 microg) selectively induced the neutralizing anti-HA IgA, but not IgG, and conferred nearly maximal protection in the airway, without inducing a systemic response. In contrast, intranasal inoculation of vaccine with 0.2 microg of the potent mucosal adjuvant cholera toxin B* (CT-B*), prepared by adding 0.2% native CT to the B subunit of CT, induced both anti-HA IgA and IgG in the airway and in the serum. The intranasal administration of HA vaccine alone induced a limited amount of mucosal IgA against influenza virus. Although the s.c. administration of HA vaccine prominently induced serum IgG and IgA, Surfacten and CT-B* did not enhance their induction, and the concentrations of Abs leaking into the airways were insufficient to prevent viral multiplication. The intranasal administration of HA-Surfacten stimulated the expression of MHC class II, CD40, and CD86 molecules in the CD11c-positive cells isolated from the nasal mucosa, but not the expression of cells from the lungs or spleens. Lymphocytes isolated from the airway mucosa after intranasal HA-Surfacten immunization prominently induced TGF-beta1 which, compared with inoculation without Surfacten, promoted an Ag-specific mucosal IgA response. Surfacten alone, however, did not induce TGF-beta1. Our observations suggest that Surfacten, by mimicking the natural surfactant, is an effective mucosal adjuvant in the process of airway immunization.  相似文献   

16.
Safe and potent new adjuvants are needed for vaccines that are administered to mucosal surfaces. This study was performed to determine if interleukin-1alpha (IL-1alpha) combined with other proinflammatory cytokines provided mucosal adjuvant activity for induction of systemic and mucosal anti-human immunodeficiency virus (HIV) peptide antibody when intranasally administered with an HIV peptide immunogen. Nasal immunization of BALB/c mice with 10 microg of an HIV env peptide immunogen with IL-1alpha, IL-12, and IL-18 on days 0, 7, 14, and 28 induced peak serum anti-HIV peptide immunoglobulin G1 (IgG1) and IgA titers of 1:131,072 and 1:7,131, respectively (P = 0.05 versus no adjuvant). The use of cholera toxin (CT) as a mucosal adjuvant induced serum IgG1 and IgA titers of 1:32,768 and 1:776, respectively. The adjuvant combination of IL-1alpha, IL-12, and IL-18 induced anti-HIV peptide IgA titers of 1:1,176, 1:7,131, and 1:4,705 in saliva, fecal extracts and vaginal lavage, respectively. Titers induced by the use of CT as an adjuvant were 1:223, 1:1,176, and 1:675, respectively. These results indicate that the proinflammatory cytokines IL-1alpha, IL-12, and IL-18 can replace CT as a mucosal adjuvant for antibody induction and are important candidates for use as mucosal adjuvants with HIV and other vaccines.  相似文献   

17.
Cholera toxin (CT) is frequently used as an experimental adjuvant intranasally for the induction of systemic and mucosal immunity. However, CT is highly reactogenic and not approved for use in humans. To define the cytokine requirements for the nasal activation of the systemic and mucosal immune system, and to design new adjuvants with efficacy similar to CT, we defined the cytokines that were able to replace CT as a nasal adjuvant for the induction of CTL. BALB/c mice were nasally immunized with an HIV immunogen that contains an MHC class I-restricted CTL epitope +/- cytokines and tested for HIV-specific immune responses. We found that combinations of IL-1alpha plus IL-18, IL-1alpha plus IL-12, and IL-1alpha plus IL-12 plus GM-CSF each induced optimal splenocyte anti-HIV CTL responses in immunized mice (range 60-71% peptide-specific (51)Cr release). Peak H-2D(d)-peptide tetramer-binding T cell responses induced by cytokine combinations were up to 5.5% of CD8(+) PBMC. Nasal immunization with HIV immunogen and IL-1alpha, IL-12, and GM-CSF also induced Ag-specific IFN-gamma-secreting cells in the draining cervical lymph node and the lung. The use of IL-1alpha, IL-12, and GM-CSF as nasal adjuvants was associated with an increased expression of MHC class II and B7.1 on nonlymphocytes within the nasal-associated lymphoid tissue/nasal mucosa. Thus, IL-1alpha, IL-12, IL-18, and GM-CSF are critical cytokines for the induction of systemic and mucosal CTL after nasal immunization. Moreover, these cytokines may serve as effective adjuvants for nasal vaccine delivery.  相似文献   

18.
Mucosae and skin are exposed to environmental antigens and are natural entry routes for most infectious agents. To maintain immunological tolerance and ensure protective immunity against pathogens, epithelial surfaces are surveyed permanently by antigen-presenting dendritic cells (DCs). Many DC subsets have been described in epithelial tissues, depending on the inflammatory state and the type of epithelium. Identification of the DC subset able to induce cytotoxic CD8+ T cells against antigens delivered via mucosae or skin, is a major issue for the development of efficient anti-infectious and anti-tumoral vaccines. Until recently, it was commonly accepted that Langerhans cells (LC), the prototype of immature DCs residing in skin and certain mucosae, can capture and process antigens and, in response to danger signals, undergo a maturation program allowing their migration to the draining lymph nodes for priming of na?ve T cells. This concept likely needs to be revisited. Recent evidence from animal models revealed that resident epithelial tissue DCs, including LCs, do not play a direct role in T cell priming, but may contribute to maintenance of peripheral tolerance. Alternatively, DCs newly recruited into muco-cutaneous tissues exposed to pro-inflammatory stimuli are responsible for efficient priming and differentiation of CD8+ T cells into cytolytic effectors. These DC originate from blood monocytes and can cross-present protein antigens to CD8+ T cells, which subsequently give rise to specific CTL effectors. Remarkably, components derived from bacteria, virus and chemicals capable to enhance CCL20 production in epithelia, promote CCR6-dependent DC recruitment and behave as adjuvants allowing for cross-primed CD8+ CTL. These advances in the dynamic and function of epithelial tissue DC provide a rationale for the screening of novel CD8+ T cell adjuvants and the design of novel mucosal and skin vaccines.  相似文献   

19.
Although highly effective, the use of GM1-receptor binding holotoxins as nasal mucosal adjuvants has recently been cautioned due to the risk for their accumulation in the brain and other nervous tissues. Therefore we have explored the efficacy of the CTA1-DD adjuvant for its ability to enhance nasal immune responses in mice. We found that despite the lack of a mucosal binding element, the B cell-targeted CTA1-DD molecule was an equally strong adjuvant as cholera toxin (CT). The potency of CTA1-DD was not a result of endotoxin contamination because more than a 50-fold higher dose of LPS was needed to achieve a similar enhancement. Moreover, the adjuvant effect was TLR4-independent and absent in mutant CTA1-E112K-DD, lacking enzymatic activity. The CTA1-DD adjuvant augmented germinal center formations and T cell priming in the draining lymph nodes, and contrary to CT, promoted a balanced Th1/Th2 response with little effect on IgE Ab production. CTA1-DD did not induce inflammatory changes in the nasal mucosa, and most importantly did not bind to or accumulate in the nervous tissues of the olfactory bulb, whereas CT bound avidly to the nervous tissues. We believe that the nontoxic CTA1-DD adjuvant is an attractive solution to the current dilemma between efficacy and toxicity encountered in CT-holotoxin adjuvant or Escherichia coli heat-labile toxin-holotoxin adjuvant strategies and provides a safe and promising candidate to be included in future vaccines for intranasal administration.  相似文献   

20.
Our previous studies showed that mucosal immunity was impaired in 1-year-old mice that had been orally immunized with OVA and native cholera toxin (nCT) as mucosal adjuvant. In this study, we queried whether similar immune dysregulation was also present in mucosal compartments of mice immunized by the nasal route. Both 1-year-old and young adult mice were immunized weekly with three nasal doses of OVA and nCT or with a nontoxic chimeric enterotoxin (mutant cholera toxin-A E112K/B subunit of native labile toxin) from Brevibacillus choshinensis. Elevated levels of OVA-specific IgG Abs in plasma and secretory IgA Abs in mucosal secretions (nasal washes, saliva, and fecal extracts) were noted in both young adult and 1-year-old mice given nCT or chimeric enterotoxin as mucosal adjuvants. Significant levels of OVA-specific CD4(+) T cell proliferative and OVA-induced Th1- and Th2-type cytokine responses were noted in cervical lymph nodes and spleen of 1-year-old mice. In this regard, CD4(+), CD45RB(+) T cells were detected in greater numbers in the nasopharyngeal-associated lymphoreticular tissues of 1-year-old mice than of young adult mice, but the same did not hold true for Peyer's patches or spleen. One-year-old mice given nasal tetanus toxoid plus the chimeric toxin as adjuvant were protected from lethal challenge with tetanus toxin. This result reinforced our findings that age-associated immune alterations occur first in gut-associated lymphoreticular tissues, and thus nasal delivery of vaccines for nasopharyngeal-associated lymphoreticular tissue-based mucosal immunity offers an attractive possibility to protect the elderly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号