首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The recoveries of genetically engineered human growth hormone (hGH), carboxypeptidase and -galactosidase, fromE. coli broths have been studied, using the process of microfiltration. The suspension superficial velocity was found to significantly influence the yields obtained. However, the molecular weight of the product could be an important factor in microfiltration. Simple washing procedures seem to be adequate for effective rejuvenation of the membrane.  相似文献   

2.
A promising method for reducing membrane fouling during crossflow microfiltration of biological suspensions is backpulsing. Very short backpulses (0.1-1.0 s) have been used to increase the net flux for washed bacterial suspensions and whole bacterial fermentation broths. The net fluxes under optimum backpulsing conditions for the washed bacteria are approximately 10-fold higher than those obtained during normal crossflow microfiltration operation, whereas only a 2-fold improvement in the net flux is achieved for the fermentation broths. A theory is presented that is based on external fouling during forward filtration and nonuniform cleaning of the membrane during reverse filtration. The model contains an adjustable parameter which is a measure of the cleaning efficiency during backpulsing; the cleaning efficiency found by fitting the model to the experiments increases with increasing frequency and duration of the backpulses. The theory predicts an optimum backpulsing frequency, as was observed experimentally. An economic analysis shows that crossflow microfiltration with backpulsing has lower costs than centrifugation, rotary vacuum filtration, and crossflow microfiltration without backpulsing.  相似文献   

3.
A novel rotary microfiltration technique specifically suited for the separation of animal cells has been developed. The concept allows the independent adjustment of wall shear stress, transmembrane pressure, and residence time, allowing straightforward optimization of the microfiltration process. By using a smooth, conically shaped rotor, it is possible to establish a controlled shear field in which animal cells experience a significant hydrodynamic lift away from the membrane surface. It is shown in preliminary experiments that shear-induced cell-rupture speeds up membrane clogging and that cell debris poses the most significant problem in harvesting of BHK cell cultures by dynamic microfiltration. However, a threshold value of shear stability exists which depends on the frequency of passing the shear field, the residence time in the shear field, as well as on cell status. By operating close to this threshold value, cell viability can be maintained while concentration polarization is efficiently minimized. By applying this concept, it is possible to attain flux rates several times higher compared to conventional crossflow filtration. Controlled shear filtration (CSF) can be used for batch harvesting as well as for cell retention in high cell density systems. In batch harvesting of hIL-2 from rBHK cell culture, a constant flux rate of 290 L h-1 m-2 has been adjusted without indication of membrane clogging or fouling.  相似文献   

4.
Hollow fiber ultrafiltration and microfiltration membranes are examined for the processing of isoelectric soya protein precipitate suspensions. A model based on the various resistances to permeate flux is used to describe membrane performance. The main resistance to permeate flux is due to the interaction between the active membrane and the soluble and precipitated protein; that is, as compared with resistances due to the active membrane itself or the membrane support structure, or arising from concentrated soluble or precipitated protein layers over the membrane surface. Soluble protein rejection and precipitate mean particle diameter are correlated with observed values of this main resistance.In contract to the ultrafiltration of soluble proteins, the flux rates observed when processing protein precipitate suspensions under a similar range of operating conditions do not approach a limiting value with increased transmembrane pressure. At high protein concentrations, greater flux rates may be achieved for precipitated as compared with soluble proteins. The use of a microfiltration membrane does not give further improvement in flux rate; this may be attributed to problems of pore fouling with precipitate particles.  相似文献   

5.
Summary Cell recycle studies have been carried out with a strain of Zymomonas mobilis selected for its improved ethanol tolerance and faster rates of glucose uptake and ethanol production. As part of the investigation a capilliary cross-flow microfiltration unit with polyamide membranes has been evaluated in view of its potential advantages (low cost and ability to withstand repeated cleaning with caustic soda). The results demonstrate that ethanol concentrations of 60–65g/l can be sustained at productivities ranging from 120–200g/l/h.  相似文献   

6.
To develop a highly efficient cell harvest step under time constraint, a novel rotating disk dynamic filtration system was studied on the laboratory scale (0.147-ft.(2) nylon membrane) for concentrating recombinant yeast cells containing an intracellular product. The existing cross-flow microfiltration method yielded pseudo-steady state flux values below 25 LMH (L/m(2). h) even at low membrane loadings (10 L/ft.(2)). By creating high shear rates (up to 120,000(-1)) on the membrane surface using a rotating solid disk, this dynamic filter has demonstrated dramatically improved performance, presumably due to minimal cake buildup and reduced membrane fouling. Among the many factors investigated, disk rotating speed, which determines shear rates and flow patterns, was found to be the most important adjustable parameter. Our experimental results have shown that the flux increases with disk rotating speed, increases with transmembrane pressure at higher cell concentrations, and can be sustained at high levels under constant flux mode. At a certain membrane loading level, there was a critical speed below which it behaved similarly to a flat sheet system with equivalent shear. Average flux greater than 200 LMH has been demonstrated at 37-L/ft.(2) loading at maximum speed to complete sixfold concentration and 15-volume diafiltration for less than 100 min. An order of magnitude improvement over the crossflow microfiltration control was projected for large scale production. This superior performance, however, would be achieved at the expense of additional power input and heat dissipation, especially when cell concentration reaches above 80 g dry cell weight (DCW)/L. Although a positive linear relationship between power input and dynamic flux at a certain concentration factor has been established, high cell density associated with high viscosity impacted adversely on effective average shear rates and, eventually, severe membrane fouling, rather than cake formation, would limit the performance of this novel system. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
Understanding the effects of membrane fouling on system capacity is critical for the successful design and scale-up of microfiltration systems. The underlying morphology and structure of the microfiltration membrane can have a significant effect on system capacity by altering the rate and extent of fouling. Experimental data were obtained for system capacity during protein microfiltration using several model membranes with both homogeneous and composite structures. Data were compared with predictions of a new model that can account for both pore blockage and cake formation, and also includes the effects of membrane morphology on internal flow profiles within the membrane. Membranes with highly interconnected pores have a significantly higher capacity due to the reduction in flux decline arising from the fluid flow under and around any surface blockage. The model calculations are in good agreement with the flux decline data, allowing far more accurate predictions of system capacity than for the commonly used V(max) analysis.  相似文献   

8.
Membrane clarification of green tea extract was studied as a treatment to reduce sediments in packaged drinks and as a pretreatment for concentration processes. The flux and variation of components were examined in dead-end and crossflow filtration with several types of membranes. In dead-end ultrafiltration, the flux reduction rate was small, although the initial flux was similar to the final flux in microfiltration. Prefiltration was effective in decreasing the reduction rate of flux. As the pore size of microfiltration membranes became smaller, the dry weight decreased gradually and the optical transmission at 660 nm increased. By ultrafiltration, 30–50% pectin, 3–11% catechins and, 7–20% caffeine were rejected. Crossflow filtration was effective in keeping the flux high. The ultrafiltration spiral membrane (pore size: 0.008 μm) was selected for repeated batch clarification of prefiltered green tea crude extract and showed reproducible performance.  相似文献   

9.
Summary A semi-continuous process for the production of human interferon-c (IFN) from E. coli is described. Harvesting of bacteria, removal of cell debris and concentration were performed by tangentialflow microfiltration (cross-flow microfiltration). Purification was done in a single step by a monoclonal-Ab column. In the process, purified material, 3–9×108 units/mg protein was obtained with a 65% overall yield.  相似文献   

10.
11.
The Predictive Aggregate Transport Model for microfiltration is used in combination with optimum fluid mechanics and electrostatics to maximize recovery of a heterologous immunoglobulin (IgG) from transgenic goat milk. The optimization algorithm involved varying pH (6.8-9), transmembrane pressure (2-4.5 psi), milk feed concentration (1-2X), membrane module type (linear vs. helical design), and axial velocity (Reynolds number: 830-1170). Operation in the pressure-dependent regime at low uniform transmembrane pressures (approximately 2 psi) using permeate circulation in co-flow, at the pI of the protein (9 in this case) was used to increase IgG recovery from less than 1% to over 95%. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and attenuated total reflection Fourier transform infrared spectroscopy of the microfiltration permeate samples confirmed that all the fat globules and most of the casein micelles were retained in the MF membrane whereas a large amount of the target IgG was transported through the membrane. Transmembrane pressure and hence permeation flux was kept low (approximately 15 lmh) to maximize IgG membrane transport and thus recovery, due to a sparse deposit on the membrane which facilitated high solute transport. Next, an analytical method was used to optimize the diafiltration process using the aggregate transport model, experimental target protein sieving coefficients and permeation flux (Baruah and Belfort, 2003). The methodology reported here should be generalizable to the recovery of target proteins found in other complex suspensions of biological origin using the microfiltration process.  相似文献   

12.
To improve protein separation, a novel integrated device combining membrane filtration and chromatography has been developed. The device basically consists of a hollow fiber filtration module whose shell side is filled with chromatographic resin beads. However, there is an essentially impermeable coated zone near the hollow fiber module outlet. The integrated device enjoys the advantages of both membrane filtration and chromatography; it also allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane; the rest of the hollow fiber membrane remained unaffected. Myoglobin (Mb) and alpha-lactalbumin (alpha-LA) were primarily used as model proteins in a binary mixture; binary mixtures of Mb and bovine serum albumin (BSA) were also investigated. Separation behaviors of binary protein mixtures were studied in devices having either an ultrafiltration (UF) or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after introducing the impermeable coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, four loading-washing-elution-reequilibration-based cyclic runs for separation of Mb and alpha-LA were performed in the device using a MF membrane with a coated zone without cleaning in between. The Mb and alpha-LA elution profiles for the four consecutive runs were almost superimposable. Due to lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem, unlike in conventional microfiltration.  相似文献   

13.
Summary In an attempt to improve corrinoid production byM. barkeri strain Fusaro, a repeated fed-batch culture coupled with a membrane module on methanol-acetate medium was used. Productivity of 22 mg-corrinoid/1. day was obtained during 626 h cultivation with corrinoid and cell mass concentration of 95 mg/l and 25.9 g-dry cell/l, respectively. The minimum value for membrane flux permeation was 18 liter/m2. h for cell mass concentration between 25.9 to 31.0 g-dry cell/l. with rejection of 100 %.  相似文献   

14.
Summary Hydrogen photoproduction has been achieved by coupling free or immobilized hydrogenases from Desulfovibrio species to illuminated chloroplasts through different electron mediators. Whereas D. gigas flavodoxin or ferredoxin I cannot directly mediate the electron flux from chloroplasts to hydrogenase, the addition of these mediators considerably enhances the H2 photoproduction of a system including cytochrome C3. These immobilized hydrogenases exhibit good stability under working conditions and can be re-used.  相似文献   

15.
The present study was to investigate the purification of a fermentation broth by an electromicrofiltration membrane. Microfiltration runs with a crude and a centrifuged broth, with solution of particles recovered from centrifugation and with permeates from microfiltration experiments were thus compared.Microfiltration performances were governed by colloids and small particles that induced sharp initial flux declines. For these results, the evolution of the overall membrane resistance was increased by 80% in comparison with the electromicrofiltration membrane. The main focus of this study was set on the enhancement of the filtrate flux by an electric field. This pressure electrofiltration leads to a drastic improvement of the filtration by 100% and the filtration time was thereby reduced. Pressure electrofiltration serves as an interesting alternative to the cross-flow filtration and it effectively separates advantageous constituents such as amino acids and biopolymers from a fermentation broth. They were equally maintained during the microelectrofiltration, although they were significantly reduced by 45% by the microfiltration without the application of an electric field. Accordingly, since the electrofiltration membrane was provided more permeability, this study experimentally demonstrates that the permeability inside a membrane can be controlled using an electric field.  相似文献   

16.
Following the rapid proliferation of organic pollutants in the surface water, the application of microfiltration technology has been extensively studied for its treatment since the 1990s. Given that the conventional treatment processes were unable to treat the excessive dissolved organic compounds, microfiltration technologies have gained momentum as effective solutions to treat the surface water. The efficacy of low-pressure membrane filtration technologies such as microfiltration and ultrafiltration has been under scrutiny ever since, and numerous research studies have aimed at enhancing their capabilities to reject the suspended solids and organic matters. This paper reviews the development trajectory of membrane technology, ranging from microfiltration to membrane bioreactors, for treating dissolved organic matters in surface water and their future potential. This is a critical review of the physicochemical and biological options such as, but not limited to, pretreatment of water using coagulation, ozonation, adsorption and/or a combination of these. On the whole, it is concluded that the membrane bioreactor system, which combines biological process and physical rejection, showed high potential in treating polluted surface water, which needs to be further investigated extensively to promote its application in water treatment plants.  相似文献   

17.
Several studies have shown that one of the critical factors governing protein fouling of microfiltration membranes is the presence of denaturedand/or aggregated protein in the bulk solutions. Experiments were performed to evaluate the role of intermolecular disulfide interchange reactionson protein aggregation and membrane fouling during stirred cell microfiltration of bovine serum albumin (BSA). The flux decline during BSA filtration was quite dramatic due to the formation of a protein deposit thatfully covered the membrane pores. This flux decline could be completely eliminated by capping the free sulfhydryl group present on the BSA with eithera carboxymethyl or cysteinyl group, demonstrating the critical importance of this free thiol in the intermolecular aggregation reactions and, in turn, protein fouling. BSA aggregation during storage could be reduced by the addition of metal chelators (EDTA and citrate) or dithiothreitol, orby storage at lower pH (7.0) these solutions all had a significantly lower rate of fouling upon subsequent filtration. This behavior is completely consistent with the known chemistry of the thiol-disulfide interchange reaction, demonstrating that an understanding of these intermolecular (aggregation) reactions can provide a rational framework for the analysis and control of protein fouling in these membrane systems. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
A novel cross-flow technique for membrane filtration of bacterial cell suspensions was established. This is an air slugs entrapped cross-flow method in which air slugs were generated by introducing air into the cross-flow stream. As air slugs moved along with cross-flow, the disturbance of cell sublayer formation on membrane surface was enhanced. As a consequence, filtration flux was improved and stabilized. The effect of air slugs on improving filtration flux was more pronounced in filtering gram-negative Escherichia coli cell than grampositive Brevibacterium flavum cell. Moreover, air slug was about 50% more effective on reducing filtration resistance using ultrafiltration (UF) membrane of 300,000 molecular weight cutoff (MWCO) than microfiltration (MF) membrane of 0.2 mum. (c)1993 John Wiley & Sons, Inc.  相似文献   

19.
Changes in fermentation media not only affect the performance of the fermentation itself (with regard to the kinetics of biomass and product formation and the yields obtained) but also the initial product-recovery operations downstream of the fermentor. In this work, microfiltration experiments to remove Saccharopolyspora erythraea biomass from fermentation broth and to recover erythromycin were carried out using two fundamentally different media; a soluble complex medium (SCM) and an oil-based process medium (OBM). Small-scale batch fermentations of 14-L working volume were carried out in triplicate using both media. Broth samples were taken from each fermentation at regular intervals from the end of the exponential-growth phase onwards. These were then processed using a Minitan II (acrylic), tangential crossflow-filtration module, fitted with a single 60 cm(2) Durapore hydrophilic 0.2 microm membrane, operated in concentration mode. The OBM fermentations produced higher titers of erythromycin but required longer fermentation times due to increased lag phases and slower maximum-growth rates. The OBM also increased the loading on the membrane; at maximum product titers residual oil concentrations of 3 g. L(-1), antifoam concentrations of 2 g. L(-1) and flour concentrations estimated at approximately 10 g/L(-1) were typical. It was found that both the permeate flux and erythromycin transmission were affected by the choice of medium. The OBM had significantly lower values for both parameters (12.8 Lm(-2) h(-1) and 89.6% respectively) than the SCM (35.9 Lm(-2) h(-1) and 96.7% respectively) when the fermentations were harvested at maximum erythromycin titers. Transmission of erythromycin stayed approximately constant as a function of fermentation time for both media, however, for the OBM the permeate flux decreased with time which correlated with an increase in broth viscosity. The relatively poor microfiltration performance of the OBM medium was, however, offset by the higher titers of erythromycin that were achieved during the fermentation. The filtration characteristics of the SCM broth did not show any correlation with either broth viscosity or fermentation time. Image-analysis data suggested that there was a correlation between hyphal morphology (main hyphal length) and permeate flux (no such correlation was found for the OBM broth). Moreover, it has been shown for the OBM broth that the residual flour had a profound effect on the microfiltration characteristics. The influence of the residual flour was greater than that imposed by the morphology and concentration of the biomass. The understanding of the factors governing the interaction of the fermentation and microfiltration operations obtained in this work provides a first step towards optimization of the overall process sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号