首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A total of 1700 Japanese strains of Bacillus thuringiensis, belonging to at least 47 H serogroups, were examined for insecticidal activity against larvae of the diamondback moth, Plutella xylostella. The high-level toxicity was associated with 612 isolates (36.0%). Of these, 608 isolates (99.3%) fell into 13 H serogroups belonging to the low-numbered H serotypes, H1-H10. Conversely, most isolates belonging to the high-numbered serotypes (>H10) had little or no larvicidal activity; only one isolate of the serovar japonensis H23 was active. P xylostella larvae were susceptible to 89.8% of the serovar morrisoni H8a:8b strains and 85.7% of galleriae H5a:5b strains. High values of 60-80% were also obtained in six serovars (thuringiensis H1, alesti H3a:3c, kurstaki H3a:3b:3c, kenyae H4a:4c, aizawai H7, and tolworhi H9), while relatively low values of <60% in two other common serovars, sotto H4a:4b and darmstadiensis H10a:10b. Five selected isolates, belonging to H serovars other than kurstaki and aizawai, were 10-60 times less toxic than the reference strain HD-1 (serovar kurstaki). Parasporal inclusion proteins of these strains were immunologically unrelated to those of the strain HD-1 and the aizawai type strain.  相似文献   

2.
A total of 525 Bacillus thuringiensis environmental isolates, belonging to the five flagellar (H) serovars (alesti, sotto, kenyae, aizawai, and morrisoni), were serotyped by extracellular heat-stable somatic antigens (HSSAs). The isolates belonging to a given H serovar were assigned to a single HSSA serogroup at a high frequency, 87-100%. This indicates that the extent of HSSA variation within a single H serovar is small in the field populations of these B. thuringiensis serovars.  相似文献   

3.
A total of 2,652 Japanese isolates of Bacillus thuringiensis, belonging to at least 54 H serogroups, were examined for assessment of the toxicity against the cigarette beetle, Lasioderma serricorne (Coleoptera: Anobiidae). When tested with spore/parasporal inclusion mixtures, strong larvicidal activities were associated with 28 isolates (1.1%). Serologically, these toxic isolates fell into 4 known H serovars: thuringiensis (9 isolates), kurstaki (2), kenyae (2), and darmstadiensis (15). Purified parasporal inclusions of the 10 selected isolates exhibited no larvicidal activity, while the supernatants of liquid cultures showed larvicidal and/or growth inhibitory effects. The activities were fully retained after heat treatment at 100 degrees C for 10 min. Overall results suggest that beta-exotoxin (or thuringiensin)-related substances are responsible for the toxicity of the present B. thuringiensis isolates against the cigarette beetle.  相似文献   

4.
The genomic diversity and relationship among 56 Bacillus thuringiensis and Bacillus cereus type strains were investigated by multi-REP-PCR fingerprinting consisting of three PCR reactions targeting the enterobacterial ERIC1 and ERIC2 and the streptococcal BOXA1R consensus sequences. A total of 113 polymorphic bands were generated in the REP-PCR profiles that allowed tracing of a single dendrogram with three major groups. Bacillus cereus strains clustered together in the A and B groups. Most of the B. thuringiensis strains clustered in group C, which included groups of serovars with a within-group similarity higher than 40% as follows: darmstadiensis, israelensis, and morrisoni; aizawai, kenyae, pakistani, and thompsoni; canadensis, entomocidus, galleriae, kurstaki, and tolworthi; alesti, dendrolimus, and kurstaki; and finitimus, sotto, and thuringiensis. Multi-REP-PCR fingerprinting clustered B. thuringiensis serovars in agreement with previously developed multilocus sequence typing schemes, indicating that it represents a rapid shortcut for addressing the genetic relationship of unknown strains with the major known serovars.  相似文献   

5.
beta-Exotoxin is a thermostable metabolite produced by some strains of Bacillus thuringiensis. Because of vertebrate toxicity, most commercial preparations of B. thuringiensis are prepared from isolates that do not produce beta-exotoxin. The aim of the present study was to find out the possible relationship between serovars of B. thuringiensis and beta-exotoxin production. A specific HPLC assay for type I beta-exotoxin has been used to detect this exotoxin in supernatants from final whole cultures of 100 strains belonging to four serovars of B. thuringiensis: thuringiensis, kurstaki, aizawai, and morrisoni. For each serovar, 25 strains randomly chosen from two Spanish collections were analyzed. Frequency of beta-exotoxin production was higher in B. thuringiensis serovar thuringiensis, whereas only two strains from serovar kurstaki showed beta-exotoxin production. None of the 25 strains belonging to serovars aizawai and morrisoni was found to produce this compound. Along with data from other studies, serovars can be classified as "common," "seldom," or "rare" beta-exotoxin producers. The serovar-dependent beta-exotoxin production is discussed in relation to the evolutionary process of serovar differentiation, the plasmid compatibility and limited plasmid exchange between serovars, and with the serovar-dependent regulation of plasmid-encoded genes.  相似文献   

6.
In total, 287 Bacillus thuringiensis isolates, recovered from feces of 28 zoo-maintained animal species, were examined for flagellar (H) antigenicity and insecticidal activity. Serologically, 209 isolates (72.8%) were allocated to the 8 H serogroups, 4 were untypable, and 74 were untestable. Among the 8 H serotypes detected, H3abc (serovar kurstaki) predominated at a high frequency of 88.0%, followed by H6 (serovar entomocidus) with a frequency of 7.7%. Insecticidal activity was associated with 67.2% of the fecal populations: 188 isolates were toxic to both Bombyx mori (Lepidoptera: Bombycidae) and Aedes aegypti (Diptera: Culicidae), 2 isolates were specific for B. mori, and 3 isolates were toxic to A. aegypti only. Of the isolates with dual toxicity, 97.9% belonged to the serovar kurstaki, producing bipyramidal parasporal inclusions. All of the H7 (serovar aizawai) isolates were toxic to both insects.  相似文献   

7.
Seventy strains of Bacillus thuringiensis representing 21 serovars were allocated to 38 genomic groups using pulsed field gel electrophoresis (PFGE) of restriction enzyme-digested DNA. There was a broad correlation between PFGE type and serotype for serovars darmstadiensis, israelensis, kenyae, kumamotoensis, kurstaki, sotto, thuringiensis, and tolworthi, although some serovars included atypical strains. Serovars canadensis and entomocidus were heterogeneous. Detection of crystal protein genes by polymerase chain reaction indicated an approximate correlation between PFGE type and cry gene complement. For example, cry1 products were amplified from DNA from PFGE type 17 strains of serovar aizawai and from PFGE type 23 strains of serovar tolworthi but not from a PFGE 18 strain of aizawai nor from a PFGE type 24 strain of tolworthi. These data suggest a clonal population structure to B. thuringiensis with some consistency of Cry-plasmid composition within PFGE types.  相似文献   

8.
Representative strains of the Bacillus cereus group of bacteria, including Bacillus anthracis (11 isolates), B. cereus (38 isolates), Bacillus mycoides (1 isolate), Bacillus thuringiensis (53 isolates from 17 serovars), and Bacillus weihenstephanensis (2 isolates) were assigned to 59 sequence types (STs) derived from the nucleotide sequences of seven alleles, glpF, gmk, ilvD, pta, pur, pycA, and tpi. Comparisons of the maximum likelihood (ML) tree of the concatenated sequences with individual gene trees showed more congruence than expected by chance, indicating a generally clonal structure to the population. The STs followed two major lines of descent. Clade 1 comprised B. anthracis strains, numerous B. cereus strains, and rare B. thuringiensis strains, while clade 2 included the majority of the B. thuringiensis strains together with some B. cereus strains. Other species were allocated to a third, heterogeneous clade. The ML trees and split decomposition analysis were used to assign STs to eight lineages within clades 1 and 2. These lineages were defined by bootstrap analysis and by a preponderance of fixed differences over shared polymorphisms among the STs. Lineages were named with reference to existing designations: Anthracis, Cereus I, Cereus II, Cereus III, Kurstaki, Sotto, Thuringiensis, and Tolworthi. Strains from some B. thuringiensis serovars were wholly or largely assigned to a single ST, for example, serovar aizawai isolates were assigned to ST-15, serovar kenyae isolates were assigned to ST-13, and serovar tolworthi isolates were assigned to ST-23, while other serovars, such as serovar canadensis, were genetically heterogeneous. We suggest a revision of the nomenclature in which the lineage and clone are recognized through name and ST designations in accordance with the clonal structure of the population.  相似文献   

9.
Five subspecies of Bacillus thuringiensis were isolated from dead and diseased larvae obtained from a laboratory colony of the European sunflower moth, Homoeosoma nebulella. The subspecies isolated were B. thuringiensis subspp. thuringiensis (H 1a), kurstaki (H 3a3b3c), aizawai (H 7), morrisoni (H 8a8b), and thompsoni (H 12). Most isolates produced typical bipyramidal crystals, but the B. thuringiensis subsp. thuringiensis isolate produced spherical crystals and the B. thuringiensis subsp. thompsoni isolate produced a pyramidal crystal. Analysis of the parasporal crystals by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the crystals from the B. thuringiensis subsp. kurstaki and aizawai isolates contained a protein of 138 kDa whereas those from B. thuringiensis subsp. morrisoni contained a protein of 145 kDa. The crystals from B. thuringiensis subsp. thuringiensis contained proteins of 125, 128, and 138 kDa, whereas those from B. thuringiensis subsp. thompsoni were the most unusual, containing proteins of 37 and 42 kDa. Bioassays of purified crystals conducted against second-instar larvae of H. nebulella showed that the isolates of B. thuringiensis subspp. aizawai, kurstaki, and thuringiensis were the most toxic, with 50% lethal concentrations (LC(inf50)s) of 0.15, 0.17, and 0.26 (mu)g/ml, respectively. The isolates of B. thuringiensis subspp. morrisoni and thompsoni had LC(inf50)s of 2.62 and 37.5 (mu)g/ml, respectively. These results show that a single insect species can simultaneously host and be affected by a variety of subspecies of B. thuringiensis producing different insecticidal proteins.  相似文献   

10.
Bacillus thuringiensis was isolated from the phylloplane of organically grown cabbage in one field during two growth seasons (1992-93). The frequency of B. thuringiensis varied between 0.02 and 0.67 of the total B. cereus/B. thuringiensis population, with an average of 0.11. Characterization of the B. thuringiensis isolates from foliage showed that the majority (64% of 150 isolates) belonged to serovar kurstaki, had bipyramidal crystals and toxicity towards Pieris brassicae and/or Trichoplusia ni. Other serovars were also found on the foliage but occurred at very low frequencies (one to three isolates of each serovar). Bacillus thuringiensis was also isolated from insects associated with the cabbage crop (Pieris rapae (Lep.), Delia radicum (Dip.), Syrphidae ribesii (Dip.) and Aleochara bilineata (Col.)), which were collected alive at different developmental stages in the same field. Serologically these isolates were assigned to the serovars kurstaki, aizawai, tochigiensis, colmeri and indiana/colmeri.  相似文献   

11.
Genes encoding insecticidal crystal proteins were cloned from three strains of Bacillus thuringiensis subsp. kenyae and two strains of B. thuringiensis subsp. kurstaki. Characterization of the B. thuringiensis subsp. kenyae toxin genes showed that they are most closely related to cryIA(c) from B. thuringiensis subsp. kurstaki. The cloned genes were introduced into Bacillus host strains, and the spectra of insecticidal activities of each Cry protein were determined for six pest lepidopteran insects. CryIA(c) proteins from B. thuringiensis subsp. kenyae are as active as CryIA(c) proteins from B. thuringiensis subsp. kurstaki against Trichoplusia ni, Lymantria dispar, Heliothis zea, and H. virescens but are significantly less active against Plutella xylostella and, in some cases, Ostrinia nubilalis. The sequence of a cryIA(c) gene from B. thuringiensis subsp. kenyae was determined (GenBank M35524) and compared with that of cryIA(c) from B. thuringiensis subsp. kurstaki. The two genes are more than 99% identical and show seven amino acid differences among the predicted sequences of 1,177 amino acids.  相似文献   

12.
One hundred and twenty-six strains of Bacillus thuringiensis representing 57 serovars were allocated to 58 genomic types using random amplified polymorphic DNA (RAPD)-PCR patterns. Serovars darmstadiensis, israelensis, kenyae, kumamotoensis, kurstaki, morrisoni, pakistani, sotto, thuringiensis and tolworthi each encompassed identical or closely related strains. Despite this genomic homogeneity, most of these serovars also included at least one variant strain. Serovars aizawai, canadensis, entomocidus and sotto biotype dendrolimus, on the other hand, were genomically heterogeneous. Of the 57 serovars examined, 31 contained at least one strain with a closely related or identical RAPD pattern to a strain from a different serovar. We conclude that while the species is genomically diverse, the homogeneous serovars represent clonal lineages of successful insect pathogens.  相似文献   

13.
Two environments, soils and silkworm ( Bombyx mort )-breeding farms, in Kumamoto Prefecture, Japan, were explored for the comparative analysis of the frequency and the flagellar (H) serotype flora of Bacillus thuringiensis. This organism was found in 39.3% of the sericulture farms and 18.5% of the silkworm litter samples. The frequency of B. thuringiensis was 4.5% among the populations of the Bacillus cereus/B. thuringiensis group in silkworm-breeding insectaries. The predominant H serotype detected in silkworm litters was 4ac (35.6%), followed by serotypes 3abc (20.0%), 8ab (13.3%), 4ab (13.3%) and 7 (2.2%). The majority (87.1%) of sericulture-derived isolates exhibited larvicidal activity against the silkworm and/or the mosquito, Aedes aegypti. Of soil samples examined, 8.1% contained B. thuringiensis. The frequency of B. thuringiensis colonies was 0.6% among soil populations of the B. cereus/B. thuringiensis group. Of 22 soil isolates, 14 were assigned to five H serotypes: 10, 17, 18, 21 and 29. Most soil isolates showed no insecticidal activity against B. mori and A. aegypti , but two, belonging to H serotype 10 and an undescribed serotype, exhibited moderate larvicidal activity against A. aegypti.  相似文献   

14.
Of 809 soil samples collected from the seven islands of the Ryukyus, Japan, 107 samples (13.2%) contained Bacillus thuringiensis. The frequency of B. thuringiensis among the B. cereus group was 1.1% (235/21842) on the average. The B. thuringiensis soil populations of the Ryukyus consisted of more than 22 H serogroups. The predominant H serotype was the H5ac/21 (serovar canadensis/colmeri), followed by the H3ad (serovar sumiyoshiensis) and H16 (serovar indiana). Geographically, most widely distributed H serogroups were the H16 and H10ac (serovar londrina); the former was recovered from five islands and the latter from three islands. Parasporal inclusions of the isolates were morphologically heterogeneous, roughly grouped into four categories: bipyramidal/cuboidal, spherical/ovoid, irregularly-pointed, and irregular-shaped. About 53% of the isolates formed spherical to ovoid parasporal inclusions. None of the isolates exhibited larvicidal activity against the silkworm, Bombyx mori. Only four isolates belonging to four different serotypes killed larvae of the mosquito, Aedes aegypti. These mosquito-specific isolates all produced spherical parasporal inclusions.  相似文献   

15.
To isolate naturally occurring novel Bacillus thuringiensis strains, we investigated the distribution and characteristics of B. thuringiensis from samples of sericultural farms in various regions of Korea in the spring and fall. Fifty-four B. thuringiensis strains out of 164 samples and 34 B. thuringiensis strains out of 135 samples were isolated in the spring and fall, respectively. Seventy percent of the isolates in the spring and 15% in the fall were toxic to lepidopteran larvae. Dipteran-active isolates were rare (7% in spring and 3% in fall isolation). Particularly, B. thuringiensis isolates, which are toxic to both Lepidoptera and Diptera, were widely distributed (19% in spring and 62% in fall isolation). Non-toxic isolates were also found (4% in spring and 20% in fall isolation). B. thuringiensis isolates in the sericultural farms represented 11 H serotypes; they were principally B. thuringiensis subsp. aizawai in the spring and kurstaki in the fall. B. thuringiensis isolates of serotypes 1, 3a, 3a3b, 4a4c, 6, 7 and 12 were toxic to Lepidoptera. Seventy isolates produced typical rhomboidal inclusions, and the remainder produced parasporal inclusions with various morphologies. PCR analysis using cryI gene type-specific primers showed that cryIAa and cryIC genes are frequently found in the spring and cryIAa gene is a predominant type in the fall. Toxicity, H serotype and the cryI gene contents of B. thuringiensis isolated from sericultural farms showed that distribution varied depending on the season.  相似文献   

16.
A population (SERD3) of the diamondback moth (Plutella xylostella L.) with field-evolved resistance to Bacillus thuringiensis subsp. kurstaki HD-1 (Dipel) and B. thuringiensis subsp. aizawai (Florbac) was collected. Laboratory-based selection of two subpopulations of SERD3 with B. thuringiensis subsp. kurstaki (Btk-Sel) or B. thuringiensis subsp. aizawai (Bta-Sel) increased resistance to the selecting agent with little apparent cross-resistance. This result suggested the presence of independent resistance mechanisms. Reversal of resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai was observed in the unselected SERD3 subpopulation. Binding to midgut brush border membrane vesicles was examined for insecticidal crystal proteins specific to B. thuringiensis subsp. kurstaki (Cry1Ac), B. thuringiensis subsp. aizawai (Cry1Ca), or both (Cry1Aa and Cry1Ab). In the unselected SERD3 subpopulation (ca. 50- and 30-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai), specific binding of Cry1Aa, Cry1Ac, and Cry1Ca was similar to that for a susceptible population (ROTH), but binding of Cry1Ab was minimal. The Btk-Sel (ca. 600-and 60-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) and Bta-Sel (ca. 80-and 300-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) subpopulations also showed reduced binding to Cry1Ab. Binding of Cry1Ca was not affected in the Bta-Sel subpopulation. The results suggest that reduced binding of Cry1Ab can partly explain resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. However, the binding of Cry1Aa, Cry1Ac, and Cry1Ca and the lack of cross-resistance between the Btk-Sel and Bta-Sel subpopulations also suggest that additional resistance mechanisms are present.  相似文献   

17.
Naturally occurring Bacillus thuringiensis in Indonesia   总被引:6,自引:3,他引:3  
S. HASTOWO, B.W. LAY AND M. OHBA. 1992. A total of 135 strains of Bacillus thuringiensis were isolated from soils of sericultural and natural environments of various regions in Indonesia: Sumatra, Java, Bali, Timor, Sulawesi and Kalimantan. Serologically, 63 strains were assigned to flagella (H) serotypes 3abc, 3ade, 4ac, 5ac, 6ab, 8ab, 9, 11, 17, 20ac, and 24, indicating a varied flora of B. thuringiensis in Indonesia. Of these, the serotype 3ade predominated, followed by the serotypes 3abc and 6ab. The other 72 strains (53·3%) were not sero-reactive against any of the H antisera to B. thuringiensis H serotypes 1–24. In toxicity tests, 34 strains belonging to serotypes 3abc, 3ade, 4ac, and 8ab showed larvicidal activity to the silkworm, Bombyx mori, while 74·8% did not exhibit insecticidal activity against larvae of B. mori and the mosquitoes, Aedes aegypti and Culex quinquefasciatus. Morphotypes of parasporal inclusions were not correlated with insecticidal activities.  相似文献   

18.
Chang  Roh  Je  Park  Jin  Woo  & Kang 《Letters in applied microbiology》1998,26(5):387-390
A strain of Bacillus thuringiensis, STB-1, toxic against Spodoptera exigua , was isolated. Bacillus thuringiensis STB-1 produced bipyramidal inclusions and reacted with the H antiserum of B. thuringiensis ssp. kurstaki . The plasmid and protein profiles of B. thuringiensis STB-1 were compared with those of its reference strains, ssp. kurstaki and ssp. kenyae . To verifiy the gene type of B. thuringiensis STB-1, PCR analysis was performedwith Spodoptera -specific cry gene primers. The result showed that B. thuringiensis STB-1, unlike its reference strains, had cry1Aa , cry1Ab , cry1Ac and cry1E , suggesting that B. thuringiensis STB-1 was a unique strain with respect to gene type. In addition, B. thuringiensis STB-1 showed a high level of toxicity against both S. exigua and Bombyx mori , whereas B. thuringiensis ssp. kurstaki HD-1 or ssp. kenyae showed a high level of toxicity against only Bombyx mori or S. exigua , respectively.  相似文献   

19.
Bacillus cereus isolates, recovered from natural environments of Japan, were examined for their flagellar (H) antigenicities with the reference H antisera against Bacillus thuringiensis serotypes H1-H55. Of 236 B. cereus isolates tested, 165 (70%) were agglutinated with the reference antisera available. The frequencies of seropositive isolates were: 77% in soils, 68% on phylloplanes, and 60% in animal fecal populations. Among the 45 H serogroups detected, the serovar shandongiensis (H22) was the predominant, followed by the serovars entomocidus (H6), indiana (H16), pakistani (H13), and neoleonensis (H24ab). These five H serovars were commonly distributed in the three populations from different sources.  相似文献   

20.
A total of 34 fecal samples, collected from 14 species of wild mammals in Korea, were examined for the occurrence of Bacillus thuringiensis. The organism was detected in 18 (53%) samples. Among the three food-habit groups, herbivorous animals yielded the highest frequency (69%) of samples positive for B. thuringiensis, followed by omnivorous animals (50%). Of the six fecal samples from carnivorous animals, only one sample contained B. thurin giensis. Among 527 isolates belonging to the Bacillus cereus - B. thuringiensis group, 43 (8%) were assigned to B. thurin giensis on the basis of the formation of parasporal inclusions. Of the 43 isolates, 13 were serologically allocated to the nine H-antigenic serotypes: H3ad (serovar sumiyoshiensis), H15 (dakota), H17/27 (tohokuensis/ mexicanensis), H19 (tochigiensis), H21 (colmeri), H29 (amagiensis), H31/49 (toguchini/muju), H42 (jinghongiensis), and H44 (higo). Other isolates were untestable or untypable by the 55 reference H antisera available. Insecticidal activity was associated with 23% of the fecal populations: three isolates killed larvae of the silkworm, Bombyx mori (Lepidoptera), and seven exhibited larvicidal activity against the mosquito, Aedes aegypti (Diptera). There was no larvicidal activity against the three lepidopterous insects: Plutella xylostella, Spodoptera exigua, and Spodoptera litura. The overall results suggest that wild animals in Korea are in contact with naturally occurring B. thuringiensis at high frequencies through the daily food intake of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号