首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cephalochordate amphioxus is the closest invertebrate relative to vertebrates. In this study, using HPLC technique, free L-amino acids (L-AAs) and D-aspartic acid (D-Asp) have been detected in the nervous system of the amphioxus Branchiostoma lanceolatum. Among other amino acids glutamate, aspartate, glycine, alanine and serine are the amino acids found at the greatest concentrations. As it occurs in the nervous system of other animal phyla, glutamate (L-Glu) and aspartate (L-Asp) are present at very high concentrations in the amphioxus nervous system compared to other amino acids, whereas the concentration of taurine and gamma-aminobutyric acid (GABA) is very low. Interestingly, as it is the case in vertebrates, D-aspartic acid is present as an endogenous compound in amphioxus nervous tissues. The physiological function of excitatory amino acids, and D-aspartate in particular, are discussed in terms of evolution of the nervous system under an Evo-fun (Evolution of function) perspective.  相似文献   

2.
The immunohistochemical localization of nine different neuropeptides was studied in the central nervous system of the amphioxus, Branchiostoma belcheri. In the brain, perikarya immunoreactive for urotensin I and FMRFamide were localized in the vicinity of the central canal. One of the processes of each of these perikarya was found to cross the dorso ventral slit-like lumen of the central canal. Oxytocin-immunoreactive short fibers, but not perikarya, were detected in the ventral part of the brain. Perikarya immunoreactive for arginine vasopressin/vasotocin, oxytocin and FMRFamide were widely distributed in the spinal cord. Arginine vasopressin/vasotocin-immunoreactive fibers often made contacts with Rohde cell axons. Angiotensin II-immunoreactive perikarya were observed in the posterior half of the spinal cord, and urotensin I-immunoreactive perikarya were found in the caudal region of the spinal cord. Cholecystokinin/gastrin-immunoreactive fibers, but not perikarya, were detected in the spinal cord; some extended as far as the ependymal layer of the cerebral ventricle. No colocalization of the peptides examined was observed. No immunoreactivity for atrial and brain natriuretic peptides nor for urotensin II was detected. The present study indicates that there are at least six separate neuronal systems that contain different peptides, respectively, in the central nervous system of the amphioxus. Their functions remain to be determined.Part of this investigation has previously been presented in abstract form (Uemura et al. 1989)  相似文献   

3.
The COE/EBF gene family marks a subset of prospective neurons in the vertebrate central and peripheral nervous system, including neurons deriving from some ectodermal placodes. Since placodes are often considered unique to vertebrates, we have characterised an amphioxus COE/EBF gene with the aim of using it as a marker to examine the timing and location of peripheral neuron differentiation. A single COE/EBF family member, AmphiCoe, was isolated from the amphioxus Branchiostoma floridae. AmphiCoe lies basal to the vertebrate COE/EBF genes in molecular phylogenetic analysis, suggesting that the duplications that formed the vertebrate COE/EBF family were specific to the vertebrate lineage. AmphiCoe is expressed in the central nervous system and in a small number of scattered ectodermal cells on the flanks of neurulae stage embryos. These cells become at least largely recessed beneath the ectoderm. Scanning electron microscopy was used to examine embryos in which the ectoderm had been partially peeled away. This revealed that these cells have neuronal morphology, and we infer that they are the precursors of epidermal primary sensory neurons. These characters lead us to suggest that differentiation of some ectodermal cells into sensory neurons with a tendency to sink beneath the embryonic surface represents a primitive feature that has become incorporated into placodes during vertebrate evolution.  相似文献   

4.
5.
Regulation of gene expression in the nervous system   总被引:1,自引:0,他引:1  
  相似文献   

6.
Retinoic acid (RA) mediates both anterior/posterior patterning and neuronal specification in the vertebrate central nervous system (CNS). However, the molecular mechanisms downstream of RA are not well understood. To investigate these mechanisms, we used the invertebrate chordate amphioxus, in which the CNS, although containing only about 20,000 neurons in adults, like the vertebrate CNS, has a forebrain, midbrain, hindbrain, and spinal cord and is regionalized by RA-signaling. Here we show, first, that domains of genes with expression normally limited to diencephalon and midbrain are generally not affected by altered RA-signaling, second, that contrary to previous reports, not only Hox1, 3, and 4, but also Hox2 and Hox6 are collinearly expressed in the amphioxus CNS, and third, that collinear expression of all these Hox genes is controlled by RA-signaling. Finally, we show that Hox1 is involved in mediating both the role of RA-signaling in regionalization of the hindbrain and in specification of hindbrain motor neurons. Thus, morpholino knock-down of the single amphioxus Hox1 mimics the effects of treatments with an RA-antagonist. This analysis establishes RA-dependent regulation of collinear Hox expression as a feature common to the chordate CNS and indicates that the RA-Hox hierarchy functions both in proper anterior/posterior patterning of the developing CNS and in specification of neuronal identity.  相似文献   

7.
《Molecular medicine today》1998,4(11):485-493
Gene therapy has generated enormous scientific, medical and public interest over the last decade. Clinical trials involving approximately 2000 patients worldwide have targeted simple genetic diseases such as cystic fibrosis, muscular dystrophy, adenosine deaminase deficiency, Gaucher's disease and familial hypercholesterolemia, as well as complex acquired diseases such as cancer and AIDS. The central nervous system is a new and particularly exciting target for gene therapy because its unique properties prevent the successful treatment of many neurological disorders by conventional means. This review discusses the potential applications of in vivo gene therapy to neurological disorders that have the greatest potential for genetic treatments.  相似文献   

8.
9.
The characteristic functions of tissues and organs results from the integrated activity of individual cells. Nowhere is this more evident than in the nervous system, where the activities of single neurons communicating via electrical and chemical signals mediate complex functions, such as learning and memory. The past decade has seen an explosion in the identification of genes encoding proteins, such as voltage-gated channels and neurotransmitter receptors, responsible for neuronal excitability. These studies have highlighted the fact that even within a neuroanatomically defined region, the coexistence of multiple cell types makes it difficult, if not impossible, to correlate patterns of gene expression with function The recent development of techniques sensitive enough to, study gene expression at the single-cell level promises to break this bottleneck to our further understanding. Using examples taken from our own laboratories and the work of others, we review these techniques, their application, and discuss some of the difficulties associated with the interpretation of the data.  相似文献   

10.
11.
The DMRT gene family in amphioxus   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
The cellular and molecular environment present in the fetus and early newborn provides an excellent opportunity for effective gene transfer. Innate and pre-existing anti-vector immunity may be attenuated or absent and the adaptive immune system predisposed to tolerance towards xenoproteins. Stem cell and progenitor cell populations are abundant, active and accessible. In addition, for treatment of early lethal genetic diseases of the nervous system, the overarching advantage may be that early gene supplementation prevents the onset of irreversible pathological changes. Gene transfer to the fetal mouse nervous system was achieved, albeit inefficiently, as far back as the mid-1980s. Recently, improvements in vector design and production have culminated in near-complete correction of a mouse model of spinal muscular atrophy. In the present article, we review perinatal gene transfer from both a therapeutic and technological perspective.  相似文献   

15.
Lichens are fungi that form symbiotic partnerships with algae. Although lichens produce diverse polyketides, difficulties in establishing and maintaining lichen cultures have prohibited detailed studies of their biosynthetic pathways. Creative, albeit non-definitive, methods have been developed to assign function to biosynthetic gene clusters in lieu of techniques such as gene knockout and heterologous expressions that are commonly applied to easily cultivatable organisms. We review a total of 81 completely sequenced polyketide synthase (PKS) genes from lichenizing fungi, comprising to our best efforts all complete and reported PKS genes in lichenizing fungi to date. This review provides an overview of the approaches used to locate and sequence PKS genes in lichen genomes, current approaches to assign function to lichen PKS gene clusters, and what polyketides are proposed to be biosynthesized by these PKS. We conclude with remarks on prospects for genomics-based natural products discovery in lichens. We hope that this review will serve as a guide to ongoing research efforts on polyketide biosynthesis in lichenizing fungi.  相似文献   

16.
Various regions of the brain have been successfully transduced by recombinant adeno-associated virus (rAAV) vectors with no detected toxicity. When using the cytomegalovirus immediate early (CMV) promoter, a gradual decline in the number of transduced cells has been described. In contrast, the use of cellular promoters such as the neuron-specific enolase promoter or hybrid promoters such as the chicken beta-actin/CMV promoter resulted in sustained transgene expression. The cellular tropism of rAAV-mediated gene transfer in the central nervous system (CNS) varies depending on the serotype used. Serotype 2 vectors preferentially transduce neurons whereas rAAV5 and rAAV1 transduce both neurons and glial cells. Recombinant AAV4-mediated gene transfer was inefficient in neurons and glial cells of the striatum (the only structure tested so far) but efficient in ependymal cells. No inflammatory response has been described following rAAV2 administration to the brain. In contrast, antibodies to AAV2 capsid and transgene product were elicited but no reduction of transgene expression was observed and readministration of vector without loss of efficiency was possible from 3 months after the first injection. Based on the success of pioneer work performed with marker genes, various strategies for therapeutic gene delivery were designed. These include enzyme replacement in lysosomal storage diseases, Canavan disease and Parkinson's disease; delivery of neuroprotective factors in Parkinson's disease, Huntington disease, Alzheimer's disease, amyotrophic lateral sclerosis, ischemia and spinal cord injury; as well as modulation of neurotransmission in epilepsy and Parkinson's disease. Several of these strategies have demonstrated promising results in relevant animal models. However, their implementation in the clinics will probably require a tight regulation and a specific targeting of therapeutic gene expression which still demands further developments of the vectors.  相似文献   

17.
18.
用免疫组织化学方法首次发现,神经肽Y(NPY)和β-内啡肽(β-Ep)样免疫阳性物质分布在文昌鱼神经系统和哈氏窝。NPY样免疫阳性神经元出现在端脑前部和中部、中脑前部和中部以及后脑,NPY样免疫阳性神经纤维在文昌鱼脑的各部分与神经元交错呈网状密集分布。神经管的背面与中部均可观察到NPY样免疫阳性神经元及其阳性性纤维。β-Ep样免疫阳性神经元及其神经纤维定位在中脑前部和中部以及神经管,且分布范围明显小于NPY。文昌鱼哈氏窝也有NPY和β-Ep样免疫阳性物质分布。这些结果表明,NPY和β-Ep可能作为脑内的一种神经递质,像鱼类那样,参与调节文昌鱼哈氏窝促性腺激素分泌细胞的分泌活动,这为文昌鱼脑-哈氏窝复合体的密切关系提供新的形态学证据。  相似文献   

19.
Coincident iterated gene expression in the amphioxus neural tube   总被引:1,自引:0,他引:1  
SUMMARY The segmental patterning of the vertebrate hindbrain has been intensely investigated, yet the evolutionary origin of hindbrain segmentation remains unclear. In the vertebrate sister group, amphioxus (Cephalochordata), the embryonic neural tube lacks obvious morphological segmentation, but comparative Hox gene expression analysis has suggested the presence of a region homologous to the vertebrate hindbrain. Does this region contain ancient segmental features shared with the vertebrate hindbrain? To help address this question we cloned the paired‐like amphioxus homeodomain gene shox and found that its expression is segmental in the amphioxus neural tube. We also uncovered a previously uncharacterized iterated neural tube expression pattern of the zinc‐finger gene AmphiKrox. We propose that these genes, along with amphioxus islet and AmphiMnx, share a one‐somite width periodicity of expression in the neural tube, the coincidence of which may reflect an underlying segmental organization. We hypothesize that the segmental patterning of neurons in the neural tube was present in the amphioxus/vertebrate ancestor, but the establishment of a bona fide segmented hindbrain may indeed have arisen in the vertebrate lineage.  相似文献   

20.
芳香化酶活性发现在脊椎动物脑、脑垂体和性腺中,但在文昌鱼脑和哈氏窝的组织特异性定位尚无可利用资料。本文用免疫细胞化学和原位杂交技术,首次发现芳香化酶活性组织特异性定位在幼年和性腺发育不同时期雌、雄文昌鱼神经系统(脑和脊髓)、轮器、哈氏窝和性腺中。芳香化酶蛋白和转录物在前脑、中脑、脊髓、轮器和哈氏窝十分丰富,而后脑、早期卵巢和精巢不够丰富;没有芳香化酶表达的部位是哈氏窝另两种细胞(不规则形细胞和带纤毛粘液细胞)以及成熟卵巢和精巢;芳香化酶免疫活性物质分布在胞质,核为阴性。芳香化酶在文昌鱼神经系统、哈氏窝和性腺的分布模式与低等脊椎动物中的分布模式极为类似,尤其是芳香化酶在脑内调节哈氏窝分泌活动的神经内分泌中枢表达,并形成类似脊椎动物的文昌鱼原始的脑-芳香化酶调节系统。这些结果有力地证明,文昌鱼脑和哈氏窝高水平的芳香化酶活性像在其它脊椎动物中一样,对局部介导睾酮芳香化起着关键作用,同时还可能影响脑-芳香化酶系统参与调节哈氏窝的分泌活动[动物学报49(6):800~806,2003]。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号