首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin of life (OOL) problem remains one of the more challenging scientific questions of all time. In this essay, we propose that following recent experimental and theoretical advances in systems chemistry, the underlying principle governing the emergence of life on the Earth can in its broadest sense be specified, and may be stated as follows: all stable (persistent) replicating systems will tend to evolve over time towards systems of greater stability. The stability kind referred to, however, is dynamic kinetic stability, and quite distinct from the traditional thermodynamic stability which conventionally dominates physical and chemical thinking. Significantly, that stability kind is generally found to be enhanced by increasing complexification, since added features in the replicating system that improve replication efficiency will be reproduced, thereby offering an explanation for the emergence of life''s extraordinary complexity. On the basis of that simple principle, a fundamental reassessment of the underlying chemistry–biology relationship is possible, one with broad ramifications. In the context of the OOL question, this novel perspective can assist in clarifying central ahistoric aspects of abiogenesis, as opposed to the many historic aspects that have probably been forever lost in the mists of time.  相似文献   

2.
The physico-chemical characterization of a teleonomic event and the nature of the physico-chemical process by which teleonomic systems could emerge from non-teleonomic systems are addressed in this paper. It is proposed that teleonomic events are those whose primary directive is discerned to be non-thermodynamic, while regular (non-teleonomic) events are those whose primary directive is the traditional thermodynamic one. For the archetypal teleonomic event, cell multiplication, the non-thermodynamic directive can be identified as being a kinetic directive. It is concluded, therefore, that the process of emergence, whereby non-teleonomic replicating chemical systems were transformed into teleonomic ones, involved a switch in the primacy of thermodynamic and kinetic directives. It is proposed that the step where that transformation took place was the one in which some pre-metabolic replicating system acquired an energy-gathering capability, thereby becoming metabolic. Such a transformation was itself kinetically directed given that metabolic replicators tend to be kinetically more stable than non-metabolic ones. The analysis builds on our previous work that considers living systems to be a kinetic state of matteras opposed to the traditional thermodynamic states that dominate the inanimate world  相似文献   

3.
A lipase-catalysed two-step butanolytic desymmetrization process for the preparation of pyrazolidyl butyl (S)-2-methylmalonate from 2-methylmalonic dipyrazolide was developed. The best reaction condition of using lipase PS-D in anhydrous n-hexane at 55?°C was first selected, leading to high yield and enantiomeric excess for the remained (S)-enantiomer. The kinetic analysis by considering the competitive inhibition from butanol was then carried out for obtaining the stereoselectivity of E1?=?11.2 for the first desymmetrization and enantiomeric ratio of E3E2?1=11.8 for the subsequent kinetic resolution. The thermodynamic analysis furthermore revealed that the enzyme stereodiscrimination was enthalpy-driven for the desymmetrization step, but changed as entropy-driven for the kinetic resolution step.  相似文献   

4.
The principles that govern the emergence of life from non-life remain a subject of intense debate. The evolutionary paradigm built up over the last 50 years, that argues that the evolutionary driving force is the Second Law of Thermodynamics, continues to be promoted by some, while severely criticized by others. If the thermodynamic drive toward ever-increasing entropy is not what drives the evolutionary process, then what does? In this paper, we analyse this long-standing question by building on Eigen's "replication first" model for life's emergence, and propose an alternative theoretical framework for understanding life's evolutionary driving force. Its essence is that life is a kinetic phenomenon that derives from the kinetic consequences of autocatalysis operating on specific biopolymeric systems, and this is demonstrably true at all stages of life's evolution--from primal to advanced life forms. Life's unique characteristics--its complexity, energy-gathering metabolic systems, teleonomic character, as well as its abundance and diversity, derive directly from the proposition that from a chemical perspective the replication reaction is an extreme expression of kinetic control, one in which thermodynamic requirements have evolved to play a supporting, rather than a directing, role. The analysis leads us to propose a new sub-division within chemistry--replicative chemistry. A striking consequence of this kinetic approach is that Darwin's principle of natural selection: that living things replicate, and therefore evolve, may be phrased more generally: that certain replicating things can evolve, and may therefore become living. This more general formulation appears to provide a simple conceptual link between animate and inanimate matter.  相似文献   

5.
The identification of dynamic kinetic stability (DKS) as a stability kind that governs the evolutionary process for both chemical and biological replicators, opens up new avenues for uncovering the chemical basis of biological phenomena. In this paper, we utilize the DKS concept to explore the chemical roots of two of biology’s central concepts—function and complexity. It is found that the selection rule in the world of persistent replicating systems—from DKS less stable to DKS more stable—is the operational law whose very existence leads to the creation of function from of a world initially devoid of function. The origin of biological complexity is found to be directly related to the origin of function through an underlying connection between the two phenomena. Thus the emergence of both function and complexity during abiogenesis, and their growing expression during biological evolution, are found to be governed by the same single driving force, the drive toward greater DKS. It is reaffirmed that the essence of biological phenomena can be best revealed by uncovering biology’s chemical roots, by elucidating the physicochemical principles that governed the process by which life on earth emerged from inanimate matter.  相似文献   

6.
A comparison is made between a biological adaptive landscape and the chemical isotopic landscape defined with three dimensions: the number of protons, the number of neutrons, and the stability of each isotopic nucleus. The courses of both biological and elemental evolution have been stochastic, leading from the simple to the complex; this is in agreement with statistical thermodynamic predictions. Analogs of mutation and natural selection occur in elementary evolution. The isotopic landscape can be assumed to have an a priori existence; at least the general features of the biological adaptive landscape also have an a priori existence. Both landscapes were occupied by spontaneous processes, analogous to diffusion.  相似文献   

7.
This study reports on the biochemical characterization as well as the kinetic and thermodynamic study of Aspergillus tamarii URM4634 β-fructofuranosidase (FFase) with transfructosylating activity. Conditions for FFase activity were optimized by means of a central composite rotational design using pH and temperature as the independent variables, while residual activity tests carried out in the temperature range of 45–65°C enabled us to investigate FFase thermostability and estimate the kinetic and thermodynamic parameters of enzyme denaturation. Optimal conditions for sucrose hydrolysis and fructosyl transfer catalyzed by crude FFase were 50°C, and pH 6.0 and 7.4, respectively. The thermodynamic properties of irreversible enzyme inactivation were found to be activation energy of 293.1 kJ mol−1, and activation enthalpy, entropy, and Gibbs free energy in the ranges 290.3–290.4 kJ mol−1, 568.7–571.0 J mol−1 K−1, and 97.9–108.8 kJ mol−1, respectively. The results obtained in this study point out satisfactory enzyme activity and thermostability at temperatures commonly used for industrial fructo-oligosaccharide (FOS) synthesis; therefore, this novel FFase appears to be a promising biocatalyst with great potential for long-term FOS synthesis and invert sugar production. To the best of our knowledge, this is the first report on kinetic and thermodynamic parameters of an A. tamarii FFase.  相似文献   

8.
It is widely recognized that enhancement of protein stability is an important biotechnological goal. However, some applications at least, could actually benefit from stability being strongly dependent on a suitable environment variable, in such a way that enhanced stability or decreased stability could be realized as required. In therapeutic applications, for instance, a long shelf-life under storage conditions may be convenient, but a sufficiently fast degradation of the protein after it has performed the planned molecular task in vivo may avoid side effects and toxicity. Undesirable effects associated to high stability are also likely to occur in food-industry applications. Clearly, one fundamental factor involved here is the kinetic stability of the protein, which relates to the time-scale of the irreversible denaturation processes and which is determined to some significant extent by the free-energy barrier for unfolding (the barrier that "separates" the native state from the highly-susceptible-to-irreversible-alterations nonnative states). With an appropriate experimental model, we show that strong environment-dependencies of the thermodynamic and kinetic stabilities can be achieved using robust protein engineering. We use sequence-alignment analysis and simple computational electrostatics to design stabilizing and destabilizing mutations, the latter introducing interactions between like charges which are screened out at high salt. Our design procedures lead naturally to mutating regions which are mostly unstructured in the transition state for unfolding. As a result, the large salt effect on the thermodynamic stability of our consensus plus charge-reversal variant translates into dramatic changes in the time-scale associated to the unfolding barrier: from the order of years at high salt to the order of days at low salt. Certainly, large changes in salt concentration are not expected to occur in biological systems in vivo. Hence, proteins with strong salt-dependencies of the thermodynamic and kinetic stabilities are more likely to be of use in those cases in which high-stability is required only under storage conditions. A plausible scenario is that inclusion of high salt in liquid formulations will contribute to a long protein shelf-life, while the lower salt concentration under the conditions of the application will help prevent the side effects associated with high-stability which may potentially arise in some therapeutic and food-industry applications. From a more general viewpoint, this work shows that consensus engineering and electrostatic engineering can be readily combined and clarifies relevant aspects of the relation between thermodynamic stability and kinetic stability in proteins.  相似文献   

9.
The energy density of battery systems is limited largely by the electrochemical window of the electrolyte. Herein, the combined thermodynamic and kinetic effects of mechanically induced metastability are shown to greatly widen the operational voltage window of solid‐state batteries based on ceramic‐sulfide electrolytes. Solid electrolyte voltage stability up to 10 V is achieved with minimal degradation, far beyond the capability of organic liquid electrolytes. Furthermore, combined experiment, ab initio computation, and theoretical modeling identify the nature of mechanically constrained Li10GeP2S12 decomposition both within the bulk and at interfaces with cathode materials at very high voltages. Previously unclear kinetic processes are identified that, when properly implemented, can potentially allow solid‐state full cells with remarkably high operational voltages.  相似文献   

10.
A kinetic analysis and simulation of the replication reactions of two competing replicators—one non-metabolic (thermodynamic), the other metabolic, are presented. Our analysis indicates that in a rich resource environment the non-metabolic replicator is likely to be kinetically selected for over the metabolic replicator. However, in the more typical resource-poor environment it will be the metabolic replicator that is the kinetically more stable entity, and the one that will be kinetically selected for. Accordingly, a causal relationship between the emergence of a simple replicator and the emergence of a metabolic system is indicated. The results lend further support for the “replication first” school of thought in the origin of life problem by providing a mechanistic basis for the emergence of a metabolism, once a simple non-metabolic replicating system has itself been established. The study reaffirms our view that the roots of Darwinian theory may be found within standard chemical kinetic theory.  相似文献   

11.
LeMaster DM  Tang J  Hernández G 《Proteins》2004,57(1):118-127
The striking kinetic stability of many proteins derived from hyperthermophilic organisms has led to the proposal that such stability may result from a heightened activation barrier for unfolding independent of a corresponding increase in the thermodynamic stability. This in turn implies a corresponding retardation of the folding reaction. A commonly cited model for kinetic thermal stabilization is the rubredoxin from Pyrococcus furiosus (Pf), which exhibits an irreversible denaturation lifetime at 100 degrees C of nearly a week. Utilizing protein resonances shifted well outside of the random coil chemical shift envelope, nuclear magnetic resonance (NMR) chemical exchange measurements on Pf rubredoxin as well as on the mesophile Clostridium pasteurianum (Cp) rubredoxin demonstrate reversible thermal transition temperatures of 144 degrees C (137 degrees C for the N-terminal modified A2K variant) and 104 degrees C, respectively, with similar (un)folding rates of approximately 25,000 s(-1), only modestly slower than the diffusion controlled rate. The absence of a substantial activation barrier to rubredoxin folding as well as the similar folding kinetics of the mesophile protein indicate that kinetic stabilization has not been utilized by the hyperthermophile rubredoxin in achieving its extreme thermal stability. The two-state folding kinetics observed for Pf rubredoxin contradict a previous assertion of multiphasic folding based on hydrogen exchange data extrapolated to an estimated midpoint of transition temperature (T(m)) of nearly 200 degrees C. This discrepancy is resolved by the observation that the base-catalyzed hydrogen exchange of the model dipeptide (N-acetyl-L-cysteine-N-methylamide)4-Cd2+ is 23-fold slower than that of the free cysteine model dipeptide used to normalize the Pf rubredoxin hydrogen exchange data.  相似文献   

12.
A sudden transition in a system from an inanimate state to the living state—defined on the basis of present day living organisms—would constitute a highly unlikely event hardly predictable from physical laws. From this uncontroversial idea, a self-consistent representation of the origin of life process is built up, which is based on the possibility of a series of intermediate stages. This approach requires a particular kind of stability for these stages—dynamic kinetic stability (DKS)—which is not usually observed in regular chemistry, and which is reflected in the persistence of entities capable of self-reproduction. The necessary connection of this kinetic behaviour with far-from-equilibrium thermodynamic conditions is emphasized and this leads to an evolutionary view for the origin of life in which multiplying entities must be associated with the dissipation of free energy. Any kind of entity involved in this process has to pay the energetic cost of irreversibility, but, by doing so, the contingent emergence of new functions is made feasible. The consequences of these views on the studies of processes by which life can emerge are inferred.  相似文献   

13.
14.
The aim of this work is to study the features of a simple replicator chemical model of the relation between kinetic stability and entropy production under the action of external perturbations. We quantitatively explore the different paths leading to evolution in a toy model where two independent replicators compete for the same substrate. To do that, the same scenario described originally by Pross (J Phys Org Chem 17:312–316, 2004) is revised and new criteria to define the kinetic stability are proposed. Our results suggest that fast replicator populations are continually favored by the effects of strong stochastic environmental fluctuations capable to determine the global population, the former assumed to be the only acting evolution force. We demonstrate that the process is continually driven by strong perturbations only, and that population crashes may be useful proxies for these catastrophic environmental fluctuations. As expected, such behavior is particularly enhanced under very large scale perturbations, suggesting a likely dynamical footprint in the recovery patterns of new species after mass extinction events in the Earth’s geological past. Furthermore, the hypothesis that natural selection always favors the faster processes may give theoretical support to different studies that claim the applicability of maximum principles like the Maximum Metabolic Flux (MMF) or Maximum Entropy Productions Principle (MEPP), seen as the main goal of biological evolution.  相似文献   

15.
Biophysical properties of antibody-based biopharmaceuticals are a critical part of their release criteria. In this context, finding the appropriate formulation is equally important as optimizing their intrinsic biophysical properties through protein engineering, and both are mutually dependent. Most previous studies have empirically tested the impact of additives on measures of colloidal stability, while mechanistic aspects have usually been limited to only the thermodynamic stability of the protein. Here we emphasize the kinetic impact of additives on the irreversible denaturation steps of immunoglobulins G (IgG) and their antigen-binding fragments (Fabs), as these are the key committed steps preceding aggregation, and thus especially informative in elucidating the molecular parameters of activity loss. We examined the effects of ten additives on the conformational kinetic stability by differential scanning calorimetry (DSC), using a recently developed three-step model containing both reversible and irreversible steps. The data highlight and help to rationalize different effects of the additives on the properties of full-length IgG, analyzed by onset and aggregation temperatures as well as by kinetic parameters derived from our model. Our results further help to explain the observation that stabilizing mutations in the antigen-binding fragment (Fab) significantly affect the kinetic parameters of its thermal denaturation, but not the aggregation properties of the full-length IgGs. We show that the proper analysis of DSC scans for full-length IgGs and their corresponding Fabs not only helps in ranking their stability in different formats and formulations, but provides important mechanistic insights for improving the conformational kinetic stability of IgGs.  相似文献   

16.
Abstract

Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze a simple but physiologically relevant reaction in all life kingdoms, carbon dioxide hydration to bicarbonate and protons. CAs are present in many pathogenic species and are involved in the bicarbonate metabolism/biosynthetic reactions involving this ion. Ubiquity of these enzymes suggests a pivotal role in microbial virulence and pathogenicity. Porphyromonas gingivalis is an anaerobic bacterium, which colonizes the oral cavity, being involved in the pathogenesis of periodontitis, an inflammatory disease leading to tooth loss. Recently, we reported an anion inhibitory study on the γ-CA (denominated PgiCA) identified in the genome of this Gram-negative bacterium. In this paper we continue our research on PgiCA, and describe the biochemical characterization of the recombinant protein, its thermal stability, the oligomeric state and the enzyme kinetics. PgiCA is a polypeptide chain formed of 192 amino acids and displays an identity of 30–33% when compared with the prototypical γ-CAs, CAM or CAMH (from Methanosarcina thermophila) or CcmM (from Thermosynechococcus elongatus). A subunit molecular mass of 21?kDa was estimated by SDS-PAGE, while HPLC size exclusion chromatography under native conditions gave an estimated molecular mass of 65?kDa suggesting that the recombinant enzyme self-associate in a homotrimer, as all other γ-CAs studied so far. Enzyme kinetic analysis showed that PgiCA is 62 times more effective as a catalyst compared to CAM, the only other γ-CA characterized in detail kinetically. All these features represent an interesting attractive for the drug design of inhibitors/activators of this new enzyme.  相似文献   

17.
If the problem of the origin of life is conceptualized as a process of emergence of biochemistry from proto-biochemistry, which in turn emerged from the organic chemistry and geochemistry of primitive earth, then the resources of the new sciences of complex systems dynamics can provide a more robust conceptual framework within which to explore the possible pathways of chemical complexification leading to living systems and biosemiosis. In such a view the emergence of life, and concomitantly of natural selection and biosemiosis, is the result of deep natural laws (the outlines of which we are only beginning to perceive) and reflects a degree of holism in those systems that led to life. Further, such an approach may lead to the development of a more general theory of biology and of natural organization, one informed by semiotic concepts.  相似文献   

18.
SHP, the capsid-stabilizing protein of lambdoid phage 21, is highly resistant against denaturant-induced unfolding. We demonstrate that this high functional stability of SHP is due to a high kinetic stability with a half-life for unfolding of 25 days at zero denaturant, while the thermodynamic stability is not unusually high. Unfolding experiments demonstrated that the trimeric state (also observed in crystals and present on the phage capsid) of SHP is kinetically stable in solution, while the monomer intermediate unfolds very rapidly. We also determined the crystal structure of trimeric SHP at 1.5A resolution, which was compared to that of its functional homolog gpD. This explains how a tight network of H-bonds rigidifies crucial interpenetrating residues, leading to the observed extremely slow trimer dissociation or denaturation. Taken as a whole, our results provide molecular-level insights into natural strategies to achieve kinetic stability by taking advantage of protein oligomerization. Kinetic stability may be especially needed in phage capsids to allow survival in harsh environments.  相似文献   

19.
It is generally assumed that the complex map of metabolism is a result of natural selection working at the molecular level. However, natural selection can only work on entities that have three basic features: information, metabolism and membrane. Metabolism must include the capability of producing all cellular structures, as well as energy (ATP), from external sources; information must be established on a material that allows its perpetuity, in order to safeguard the goals achieved; and membranes must be able to preserve the internal material, determining a selective exchange with external material in order to ensure that both metabolism and information can be individualized. It is not difficult to understand that protocellular entities that boast these three qualities can evolve through natural selection. The problem is rather to explain the origin of such features under conditions where natural selection could not work. In the present work we propose that these protocells could be built by chemical evolution, starting from the prebiotic primordial soup, by means of chemical selection. This consists of selective increases of the rates of certain specific reactions because of the kinetic or thermodynamic features of the process, such as stoichiometric catalysis or autocatalysis, cooperativity and others, thereby promoting their prevalence among the whole set of chemical possibilities. Our results show that all chemical processes necessary for yielding the basic materials that natural selection needs to work may be achieved through chemical selection, thus suggesting a way for life to begin.  相似文献   

20.
The stability of Immunoglobulin G (IgG) affects production, storage and usability, especially in the clinic. The complex thermal and isothermal transitions of IgGs, especially their irreversibilities, pose a challenge to the proper determination of parameters describing their thermodynamic and kinetic stability. Here, we present a reliable mathematical model to study the irreversible thermal denaturations of antibody variants. The model was applied to two unrelated IgGs and their variants with stabilizing mutations as well as corresponding non‐glycosylated forms of IgGs and Fab fragments. Thermal denaturations of IgGs were analyzed with three transitions, one reversible transition corresponding to CH2 domain unfolding followed by two consecutive irreversible transitions corresponding to Fab and CH3 domains, respectively. The parameters obtained allowed us to examine the effects of these mutations on the stabilities of individual domains within the full‐length IgG. We found that the kinetic stability of the individual Fab fragment is significantly lowered within the IgG context, possibly because of intramolecular aggregation upon heating, while the stabilizing mutations have an especially beneficial effect. Thermal denaturations of non‐glycosylated variants of IgG consist of more than three transitions and could not be analyzed by our model. However, isothermal denaturations demonstrated that the lack of glycosylation affects the stability of all and not just of the CH2 domain, suggesting that the partially unfolded domains may interact with each other during unfolding. Investigating thermal denaturation of IgGs according to our model provides a valuable tool for detecting subtle changes in thermodynamic and/or kinetic stabilities of individual domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号