首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of the vesicular stomatitis virus membrane matrix protein and the glycoprotein is inhibited to a greater extent than the synthesis of the nucleocapsid protein, the nonstructural protein, and the large protein when the rate of peptide chain initiation is reduced by exposure of vesicular stomatitis virus-infected cells to hypertonic medium. It is concluded that the relative sensitivity of individual viral polypeptide synthesis to hypertonic initiation block is independent of the site of synthesis, i.e., whether on membrane-associated or free polyribosomes.  相似文献   

2.
Crude initiation factor preparations from poliovirus-infected cells stimulated the translation of poliovirus RNA in vitro, but were inactive for the translation of host cell or vesicular stomatitis virus mRNA's. In contrast, similar preparations from either uninfected or vesicular stomatitis virus-infected cells supported the initiation of translation of host cell mRNA's and both viral mRNA's. These results reflect a specific alteration of some components(s) of the initiation factor preparation from poliovirus-infected cells which is consistent with the ability of the virus to inhibit the translation of host cell and vesicular stomatitis virus-directed protein synthesis.  相似文献   

3.
RNA was isolated from polyribosomes of vesicular stomatitis virus (VSV)-infected cells and tested for its ability to direct protein synthesis in extracts of animal and plant cells. In cell-free, non-preincubated extracts of rabbit reticulocytes, the 28S VSV RNA stimulated synthesis of a protein the size of the vesicular stomatitis virus L protein whereas the 13 to 15S RNA directed synthesis of the VSV M, N, NS, and possibly G proteins. In wheat germ extracts, 13 to 15S RNA also directed synthesis of the N, NS, M, and possibly G proteins. Analysis of extracts labeled with formyl [(35)S]methionine showed that the 28S RNA directed the initiation of synthesis of one protein, whereas the 13 to 15S RNA directed initiation of at least four proteins. It is concluded that the 28S RNA encodes only the L protein, whereas the 13 to 15S RNA is a mixture of species, presumably monocistronic, which code for the four other known vesicular stomatitis virus proteins.  相似文献   

4.
We have developed a cell-free system from Aedes albopictus (mosquito) cells which is able to carry out endogenous protein synthesis and is stable to freezing and thawing. Successful preparation of extracts was found to depend on the presence of purified placental RNase inhibitor during cell breakage. Micrococcal nuclease-treated extracts translated exogenously added Sindbis 26S or vesicular stomatitis virus mRNA with a high degree of fidelity, demonstrating that initiation of protein synthesis had occurred. Evidence is presented showing that when cell fractions containing intracellular membranes were used to translate vesicular stomatitis virus mRNA, the G protein was glycosylated and inserted into microsomal vesicles. Additional studies indicate that initiation of protein synthesis in this system is dependent on a capped and methylated 5'-terminal structure in the mRNA.  相似文献   

5.
Based on the information that high salt inhibits the initiation of cellular mRNA translation which depends on the function of the 5'-terminal structure of mRNA, we compared the effect of high salt on translation of host cellular mRNAs and influenza viral mRNAs, both of which are of 5'-terminal structure. Brief exposure of influenza B virus-infected MDCK cells to high salt medium resulted in a dose-dependent inhibition of viral polypeptide synthesis as well as of cellular polypeptide synthesis, but it had less effect on synthesis of viral polypeptides, particularly nonstructural protein (NS). Under these conditions the Na+ content of the infected cells was significantly increased. A similar salt effect on in vitro translation of viral and cellular mRNAs extracted from infected cells was also observed. There was no significant difference in sensitivity to hypertonic block of in vivo translation of influenza viral mRNAs and vesicular stomatitis virus mRNAs, the latter of which possess a virus-directed structure at the 5'-terminus.  相似文献   

6.
Previous studies have noted the existence of a 190,000-dalton vesicular stomatitis virus (VSV) protein called the large (L) protein. To determine whether this protein is a nonspecific aggregate, a precursor to the other VSV proteins, or a unique viral protein, its synthesis relative to the other VSV proteins was studied under conditions of inhibition of initiation of protein synthesis. Also, its tryptic peptides were compared to those of the other VSV proteins. In both cases the results were consistent with the identification of the large protein as a unique viral protein.  相似文献   

7.
8.
Infection of MPC-11 mouse plasmacytoma cells by vesicular stomatitis virus results in 30 to 35% reduction in [35S]methionine incorporation into total proteins within 30 min postinfection. By 6 h postinfection, total protein synthesis is reduced by 80 to 90%. However, even by 30 min postinfection, a differential suppression of the synthesis of individual host protein is observed. The synthesis of the immunoglobin G (IgG) heavy chain (H), and, in particular, the synthesis of IgG light chain (L), is considerably more resistant to vesicular stomatitis virus-induced inhibition than is the synthesis of the non-IgG proteins as a whole; e.g., when the synthesis of non-IgG proteins was reduced by 41%, the synthesis of the H and L chains was reduced by 28 and 7%, respectively. Furthermore, these alterations in the relative synthesis of the L chain, H chain, and non-IgG are comparable to the alterations previously observed in uninfected MPC-11 cells when the overall rate of polypeptide chain initiation was selectively reduced (D.L. Nuss and G. Koch, 1976). These results are discussed in terms of the strategy of virus-directed suppression of host mRNA translation.  相似文献   

9.
Addition of monensin or nigericin after poliovirus entry into HeLa cells prevents the inhibition of host protein synthesis by poliovirus. The infected cells continue to synthesize cellular proteins at control levels for at least 8 h after infection in the presence of the ionophore. Cleavage of p220 (gamma subunit of eukaryotic initiation factor 4 [eIF-4 gamma]), a component of the translation initiation factor eIF-4F, occurs to the same extent in poliovirus-infected cells whether or not they are treated with monensin. Two hours after infection there is no detectable intact p220, but the cells continue to translate cellular mRNAs for several hours at levels similar to those in uninfected cells. Nigericin or monensin prevented the arrest of host translation at all the multiplicities of poliovirus infection tested. At high multiplicities of infection, an unprecedented situation was found: cells synthesized poliovirus and cellular proteins simultaneously. Superinfection of vesicular stomatitis virus-infected HeLa cells with poliovirus led to a profound inhibition of vesicular stomatitis virus protein synthesis, while nigericin partially prevented this blockade. Drastic inhibition of translation also took place in influenza virus-infected Vero cells treated with nigericin and infected with poliovirus. These findings suggest that the translation of newly synthesized mRNAs is dependent on the integrity of p220, while ongoing cellular protein synthesis does not require an intact p220. The target of ionophore action during the poliovirus life cycle was also investigated. Addition of nigericin at any time postinfection profoundly blocked the synthesis of virus RNA, whereas viral protein synthesis was not affected if nigericin was added at 4 h postinfection. These results agree well with previous findings indicating that inhibitors of phospholipid synthesis or vesicular traffic interfere with poliovirus genome replication. Therefore, the action of nigericin on the vesicular system may affect poliovirus RNA synthesis. In conclusion, monensin and nigericin are potent inhibitors of poliovirus genome replication that prevent the shutoff of host translation by poliovirus while still permitting cleavage of p220.  相似文献   

10.
Five highly cytolytic strains of both Indiana and New Jersey serotypes of vesicular stomatitis virus were shown to induce cell fusion in BHK-21 and R(B77) cells. Inhibition of protein synthesis after the eclipse period of viral replication is a prerequisite for vesicular stomatitis virus-induced cell fusion. Pulse-chase experiments showed that inhibition of protein synthesis would lead to a drastic reduction in the intracellular pool of M protein as compared with other proteins. A temperature-sensitive mutant defective in M protein function (G31) was the only mutant of the five complementation groups to spontaneously induce polykaryocytes at the nonpermissive temperature. Previously, G protein has been shown to play a role in vesicular stomatitis virus-induced cell fusion. These results suggest that the combination of the presence of G protein on the virus-infected cell surface and the absence of functional M protein or a reduced level of intracellular M protein promotes cell fusion. On the basis of this study, we propose that vesicular stomatitis virus infection can induce cell fusion when the functional M protein pool declines to a critical level while G protein remains on the cell surface.  相似文献   

11.
The effect of interferon on the expression of the vesicular stomatitis virus glycoprotein G gene was examined in simian COS cells transfected with the expression vector pSVGL containing the G gene under the control of the SV40 late promoter. When COS cells were treated with interferon 24 h after transfection, the synthesis of vesicular stomatitis virus G protein was inhibited by about 80% as compared to that in untreated controls. By contrast, under the same conditions, neither the plasmid copy number nor the G gene mRNA levels were detectably affected by interferon treatment. Likewise, the synthesis of simian virus 40 large T-antigen was not inhibited by interferon treatment of transfected COS cells even though the synthesis of vesicular stomatitis virus G protein was markedly inhibited. The residual G protein synthesized in transfected, interferon-treated COS cells appeared to be normally glycosylated.  相似文献   

12.
The dsRNA-dependent kinase PKR is an interferon-inducible protein with ability to phosphorylate the α subunit of the eukaryotic initiation factor (eIF)-2 complex, resulting in a shut-off of general translation, induction of apoptosis, and inhibition of virus replication. Here we analyzed the modification of PKR by the small ubiquitin-like modifiers SUMO1 and SUMO2 and evaluated the consequences of PKR SUMOylation. Our results indicate that PKR is modified by both SUMO1 and SUMO2, in vitro and in vivo. We identified lysine residues Lys-60, Lys-150, and Lys-440 as SUMOylation sites in PKR. We show that SUMO is required for efficient PKR-dsRNA binding, PKR dimerization, and eIF2α phosphorylation. Furthermore, we demonstrate that SUMO potentiates the inhibition of protein synthesis induced by PKR in response to dsRNA, whereas a PKR SUMOylation mutant is impaired in its ability to inhibit protein synthesis and shows reduced capability to control vesicular stomatitis virus replication and to induce apoptosis in response to vesicular stomatitis virus infection. In summary, our data demonstrate the important role of SUMO in processes mediated by the activation of PKR.  相似文献   

13.
The relationship between the development of cytopathic effect (CPE) and the inhibition of host macromolecular synthesis was examined in a CPE-susceptible cloned line of Aedes albopictus cells after infection with vesicular stomatitis virus. To induce rapid and maximal CPE, two conditions were required: (i) presence of serum in the medium and (ii) incubation at 34 degrees C rather than at 28 degrees C. In the absence of serum, incubation of infected cultures at 34 degrees C resulted in a significant increase in viral protein and RNA synthesis compared with that observed at 28 degrees C. However, when serum was present in the medium, by 6 h after infection protein synthesis (both host and viral) was markedly inhibited when infected cells were maintained at 34 degrees C. RNA synthesis (host and viral) was also inhibited in vesicular stomatitis virus-infected cells maintained at 34 degrees C with serum, but somewhat more slowly than protein synthesis. Examination of polysome patterns indicated that when infected cultures were maintained under conditions which predispose to CPE, more than half of the ribosomes existed as monosomes, suggesting that protein synthesis was being inhibited at the level of initiation. In addition, the phosphorylation of one (or two) polysome-associated proteins was reduced when protein synthesis was inhibited. Our findings indicate a strong correlation between virus-induced CPE in the LT-C7 clone of A. albopictus cells and the inhibition of protein synthesis. Although the mechanism of the serum effect is not understood, incubation at 34 degrees C probably predisposes to CPE and inhibition of protein synthesis by increasing the amount of viral gene products made.  相似文献   

14.
We studied the association of several eucaryotic viral and cellular mRNAs with cytoskeletal fractions derived from normal and virus-infected cells. We found that all mRNAs appear to associate with the cytoskeletal structure during protein synthesis, irrespective of their 5' and 3' terminal structures: e.g., poliovirus that lacks a 5' cap structure or reovirus and histone mRNAs that lack a 3' poly A tail associated with the cytoskeletal framework to the same extent as capped, polyadenylated actin mRNA. Cellular (actin) and viral (vesicular stomatitis virus and reovirus) mRNAs were released from the cytoskeletal framework and their translation was inhibited when cells were infected with poliovirus. In contrast, actin mRNA was not released from the cytoskeleton during vesicular stomatitis virus infection although actin synthesis was inhibited. In addition, several other conditions under which protein synthesis is inhibited did not result in the release of mRNAs from the cytoskeletal framework. We conclude that the association of mRNA with the cytoskeletal framework is required but is not sufficient for protein synthesis in eucaryotes. Furthermore, the shut-off of host protein synthesis during poliovirus infection and not vesicular stomatitis virus infection occurs by a unique mechanism that leads to the release of host mRNAs from the cytoskeleton.  相似文献   

15.
The L and NS proteins of vesicular stomatitis virus were purified from transcribing ribonucleoprotein complex and were used to study their requirements and functions during reconstitution of RNA synthesis in vitro. The requirements for L and NS proteins for optimal RNA synthesis were found to be catalytic and stoichiometric, respectively. Addition of increasing amounts of NS protein to N-RNA template and saturating L protein, the ratio of N-mRNA to leader RNA synthesis increased linearly. In contrast, when the concentration of L protein was increased the corresponding ratio remained constant. These results, coupled with the observation that the L protein is involved in the initiation of RNA synthesis, suggest that the NS protein is involved in the RNA chain elongation step. The NS protein possibly interacts with both the L protein and the template N-RNA and unwinds the latter to facilitate the movement of L protein on the template RNA.  相似文献   

16.
A cDNA clone containing the entire vesicular stomatitis virus nucleocapsid gene was assembled by fusing portions of two partial clones. When the cDNA clone was inserted into a new general-purpose eucaryotic expression vector and introduced into appropriate host cells, abundant N-protein synthesis ensued. The expressed protein was indistinguishable from authentic N protein produced during vesicular stomatitis virus infections. The recombinant N protein was recognized by a polyclonal antibody and two different monoclonal antibodies and could not be resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis from authentic N. Our results suggest that the recombinant N protein produced in transfected cells rapidly aggregates into high-molecular-weight complexes in the absence of vesicular stomatitis virus genomic RNA.  相似文献   

17.
The rate of protein synthesis in metaphase-arrested cells is reduced as compared to interphase cells. The reduction occurs at the translation initiation step. Here, we show that, whereas poliovirus RNA translation is not affected by the mitotic translational block, the translation of vesicular stomatitis virus mRNAs is. In an attempt to elucidate the mechanism by which initiation of protein synthesis is reduced in mitotic cells, we found that the interaction of the mRNA 24-kDa cap-binding protein (CBP) with the mRNA 5' cap structure is reduced in mitotic cell extracts, consistent with their lower translational efficiency. Addition of cap-binding protein complex stimulated the translation of endogenous mRNA in extracts from mitotic but not interphase cells. In addition, we found that the 24-kDa CBP from mitotic cells was metabolically labeled with 32P to a lesser extent than the protein purified from interphase cells. These results are consistent with a hypothesis that the 24-kDa CBP is implicated in the inhibition of protein synthesis in metaphase-arrested cells. Possible mechanisms for this inhibition are offered.  相似文献   

18.
Specificity of interferon action in protein synthesis.   总被引:5,自引:3,他引:2       下载免费PDF全文
Inhibitors of elongation steps in protein synthesis such as cycloheximide and anisomycin mimic interferon treatment in that they specifically inhibit the synthesis of certain viral proteins. These specific effects are seen only at very low concentrations of the antibiotics, under conditions where host cellular protein synthesis, as well as cell viability, are not severely reduced. A qualitatively as well as quantitatively close correlation between the effects of the two types of agents has been established for encephalomyocarditis virus, vesicular stomatitis virus and murine leukemia virus protein synthesis. It is concluded that one of the primary mechanisms of interferon action may be a nonspecific retardation of one or more elongation steps, and that this may be sufficient to account for its effects on the replication of certain viruses such as encephalomyocarditis and vesicular stomatitis viruses.  相似文献   

19.
20.
R C Herman 《Biochemistry》1987,26(25):8346-8350
Internal initiation of translation on the vesicular stomatitis virus (VSV) phosphoprotein (P) mRNA leads to the synthesis of a second protein [Herman, R. C. (1986) J. Virol. 58, 797-804]. Characterization of this phenomenon shows that initiation at the 5'-proximal and internal AUG codons has different optima for mono- and divalent cations in the reticulocyte lysate. Whereas 5' initiation is stimulated by increasing concentration of K+ over the endogenous level, internal initiation is inhibited. Internal initiation is much less sensitive to the effects of the cap analogue 7mGpppG in both the reticulocyte lysate and the wheat-germ extract under conditions that reduce 5'-proximal initiation to only about 4-5% of the control level. These results imply that 5'-proximal and internal initiations are distinct biochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号