首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous infection with hepatitis delta virus (HDV) and hepatitis B virus (HBV) in humans is often associated with severe viral liver disease including fulminant hepatitis. Since HBV is thought to be noncytopathic to the hepatocyte, the enhanced disease severity observed during dual infection has been attributed to either simultaneous immune responses against the two viruses or direct cytotoxic effects of HDV products on the hepatocyte or both. To examine these alternate possibilities, we produced transgenic mice that express the small and large delta antigens (HDAg) in hepatocyte nuclei at levels equal to those observed during natural HDV infection. No biological or histopathological evidence of liver disease was detectable during 18 months of observation, suggesting that neither the large nor small form of HDAg is directly cytopathic to the hepatocyte in vivo.  相似文献   

2.
The functions of delta antigens (HDAgs) in the morphogenesis of hepatitis delta virus (HDV) have been studied previously. The C terminus of large HDAg has been shown to complex with the small surface antigen (HBsAg) of helper hepatitis B virus, whereas the assembly of small HDAg requires interaction with the N terminus of large HDAg (M.-F. Chang, C.-J. Chen, and S. C. Chang, J. Virol. 68:646-653, 1994). To further examine the molecular mechanisms by which HDAgs are involved in the assembly of HDV RNA, we have cotransfected Huh-7 cells with plasmids representing a longer than unit-length HDV and the small HBsAg cDNAs. We found that HDAg mRNA could be generated from an endogenous promoter within the HDV cDNA that was translated into large HDAg. Large HDAg is capable of complexing with monomeric HDV genomic RNA to form ribonucleoprotein particles (RNPs) and is capable of forming enveloped HDV-like particles in the presence of small HBsAg without undergoing HDV replication. In addition, the middle region from amino acid residues 89 to 145 of large HDAg is required for assembly of the RNPs but is dispensable for assembly of the enveloped particles. RNA assembly is also demonstrated with small HDAg when it is cotransfected with a packaging-defective large HDAg mutant and small HBsAg. Leu-115 within the putative helix-loop-helix structure of the small HDAg is important for the replication of HDV but is not essential for RNA assembly, suggesting that conformational requirements of small HDAg for replication and assembly of viral RNA may be different. Further studies indicate that a 312-nucleotide linear HDV RNA from one end of the HDV and structure is sufficient to form RNP complexes competent for assembly of virus-like particles with large HDAg and small HBsAg.  相似文献   

3.
C Z Lee  J H Lin  M Chao  K McKnight    M M Lai 《Journal of virology》1993,67(4):2221-2227
Hepatitis delta antigen (HDAg) is an RNA-binding protein with binding specificity for hepatitis delta virus (HDV) RNA (J. H. Lin, M. F. Chang, S. C. Baker, S. Govindarajan, and M. M. C. Lai, J. Virol. 64:4051-4058, 1990). By amino acid sequence homology search, we have identified within its RNA-binding domain two stretches of an arginine-rich motif (ARM), which is present in many prokaryotic and eukaryotic RNA-binding proteins. The first one is KERQDHRRRKA and the second is EDEKRERRIAG, and they are separated by 29 amino acids. Deletion of either one of these ARM sequences resulted in the total loss of the in vitro RNA-binding activity of HDAg. Thus, HDAg is different from other RNA-binding proteins in that it requires two ARM-like sequences for its RNA-binding activity. Replacement of the spacer sequence between the two ARMs with a shorter stretch of sequence also reduced RNA binding in vitro. Furthermore, site-specific mutations of the basic amino acid residues in both ARMs resulted in the total loss or reduction of RNA-binding activity. The biological significance of the RNA-binding activity was studied by examining the trans-activating activity of the RNA-binding mutants. The plasmids expressing HDAgs with various mutations in the RNA-binding motifs were cotransfected with a replication-defective HDV dimer cDNA construct into COS cells. It was found that all the HDAg mutants which had lost the in vitro RNA-binding activity also lost the ability to complement the defect of HDV RNA replication. We conclude that the trans-activating function of HDAg requires its binding to HDV RNA.  相似文献   

4.
5.
Phosphorylation of the hepatitis delta virus antigens.   总被引:2,自引:2,他引:0       下载免费PDF全文
V Bichko  S Barik    J Taylor 《Journal of virology》1997,71(1):512-518
We used two-dimensional electrophoresis (nonequilibrium pH gradient electrophoresis followed by sodium dodecyl sulfate-10% polyacrylamide gel electrophoresis) coupled with 32P labeling and immunoblotting detection with 125I-protein A to detect and quantitate phosphorylation of the large and small forms of the delta antigen (deltaAg-L and deltaAg-S, respectively). Analysis of deltaAg species from the serum and liver of an infected woodchuck as well as deltaAg species expressed in and secreted from transfected Huh7 cells revealed the following. (i) No detectable phosphorylation of deltaAg-S occurred. (ii) In virions from the serum of an infected animal and in the particles secreted from cotransfected cells, none of the deltaAg-L was phosphorylated. (iii) Only in the infected liver and in transfected cells was any phosphorylation detected; it corresponded to a monophosphorylated form of deltaAg-L. Given these results, we carried out serine-to-alanine mutagenesis of the deltaAg-L to determine whether the monophosphorylation was predominantly at a specific site on the unique 19-amino-acid (aa) extension. We mutated each of the two serines, aa 207 and 210, on this extension and also the serine at aa 177. These three mutations had no significant effect on phosphorylation. In contrast, mutagenesis to alanine of the cysteine at aa 211, which normally acts as the acceptor for farnesylation, completely inhibited phosphorylation. Our interpretation is that the site(s) of phosphorylation is probably not in the 19-aa extension unique to deltaAg-L and that phosphorylation of deltaAg-L may depend upon prior farnesylation. The possible significance of the intracellular phosphorylated forms of deltaAg-L is discussed.  相似文献   

6.
To determine the sequence requirements and structural features of the self-cleavage domain of hepatitis delta virus (HDV) antigenomic RNA, we constructed a series of mutants and measured the rate constant of the cleavage reaction for each. The self-cleavage activity of HDV RNA of antigenomic sense was found to reside in a region of less than 90 nucleotides in length. The catalytic domain contained a long complementary sequence which could be deleted to half of its original size. Moreover, this region could be replaced by other sequences as long as they could fold into a stem-and-loop structure. The catalytic domain also required a 6-basepair helix adjacent to the cleaving point for activity. The structural features of these two base-pairing regions are quite similar to those of the HDV genomic self-cleavage domain. The cleavage site as well as the the hinge region (the sequence between the two stems) requires specific sequences for activity.  相似文献   

7.
Hepatitis delta virus (HDV) encodes two isoforms of delta antigens (HDAgs). The small form of HDAg is required for HDV RNA replication, while the large form of HDAg inhibits the viral replication and is required for virion assembly. In this study, we found that the expression of B23, a nucleolar phosphoprotein involved in disparate functions including nuclear transport, cellular proliferation, and ribosome biogenesis, is up-regulated by these two HDAgs. Using in vivo and in vitro experimental approaches, we have demonstrated that both isoforms of HDAg can interact with B23 and their interaction domains were identified as the NH(2)-terminal fragment of each molecule encompassing the nuclear localization signal but not the coiled-coil region of HDAg. Sucrose gradient centrifugation analysis indicated that the majority of small HDAg, but a lesser amount of the large HDAg, co-sedimented with B23 and nucleolin in the large nuclear complex. Transient transfection experiments also indicated that introducing exogenous full-length B23, but not a mutated B23 defective in HDAg binding, enhanced HDV RNA replication. All together, our results reveal that HDAg has two distinct effects on nucleolar B23, up-regulation of its gene expression and the complex formation, which in turn regulates HDV RNA replication. Therefore, this work demonstrates the important role of nucleolar protein in regulating the HDV RNA replication through the complex formation with the key positive regulator being small HDAg.  相似文献   

8.
It has previously been shown that human hepatitis virus delta antigen has an RNA-binding activity (Chang et al., J. Virol. 62:2403-2410, 1988). In the present study, the specificity of such an RNA-protein interaction was demonstrated by expressing various domains of the delta antigen in Escherichia coli as TrpE fusion proteins and testing their RNA-binding activities in a Northwestern protein-RNA immunoblot assay and RNA gel mobility shift assay. Hepatitis delta virus (HDV) RNA bound specifically to the delta antigen in the presence of an excess amount of unrelated RNAs and a relatively high salt concentration. Both genome- and antigenome-sense HDV RNAs and at least two different regions of HDV genomic RNA bound to the delta antigen. Surprisingly, these two different regions of HDV genomic RNA could compete with each other for delta antigen binding, although they do not have common nucleotide sequences. In contrast, this binding could not be competed with by other viral or cellular RNA. Since both the genomic and antigenomic HDV RNAs had strong intramolecular complementary sequences, these results suggest that the binding of delta antigen is probably specific for a secondary structure unique to the HDV RNA. By expressing different subdomains of the delta antigen, we found that the middle one-third of delta antigen was responsible for binding HDV RNA. Neither the N-terminal nor the C-terminal domain bound HDV RNA. Binding between the delta antigen and HDV RNA was also demonstrated within the HDV particles isolated from the plasma of a human delta hepatitis patient. This in vivo binding resisted treatment with 0.1% sodium dodecyl sulfate and 0.5% Nonidet P-40. In addition, we showed that the antiserum from a human patient with delta hepatitis reacted with all three subdomains of the delta antigen, indicating that all of the domains are immunogenic in vivo. These studies demonstrated the specific interaction between delta antigen and HDV RNA.  相似文献   

9.
10.
During the hepatitis delta virus (HDV) RNA replication, synthesis of either the mRNA for the delta antigen (HDAg) or the full-length antigenomic RNA is determined by selective usage of the potent poly(A) signal on the antigenome. To elucidate the regulatory mechanism, HDV cDNA cotransfection system was used to examine the potential effect of the secondary structure of the nascent RNA and that of the HDAg on HDV polyadenylation in transfected cells. We found that when the nascent RNA species could fold itself to form the rodlike structure, the HDV polyadenylation was suppressed 3 to 5 fold by the HDAg. In addition, we observed that the small and the large HDAg exerted a similar suppressive effect on the HDV polyadenylation, though they played different roles in HDV replication. We concluded that the HDV polyadenylation could be regulated by the structure of the nascent antigenomic RNA and by either the small or large HDAg.  相似文献   

11.
M Chao  S Y Hsieh    J Taylor 《Journal of virology》1991,65(8):4057-4062
The only known protein of hepatitis delta virus (HDV), the delta antigen, is found both within virus particles and within the nucleus of the infected cell, where it has one or more roles essential for RNA genome replication. Others have demonstrated that the antigen has the ability, in vitro, to specifically bind HDV RNA species. We report a further examination of this phenomenon, using partially purified recombinant protein, expressed as a fusion with the staphylococcal protein A. From Northwestern (RNA-immunoblot) analyses with both complete and various subdomains of HDV genomic and antigenomic RNAs, we found that a necessary feature for specific binding was that the RNA be able to fold to some extent into the so-called rodlike structure; this structure is a predicted intramolecular partial base-pairing of the circular RNA, with about 70% of all bases involved, so as to produce an unbranched rodlike structure. Six different subregions of the HDV rodlike structure, three on the genomic RNA and three on its complement, the antigenomic RNA, were tested and found to be sufficient for antigen binding. However, features in addition to the rodlike structure may also be necessary for specific binding, because we found that a similar structure present in the RNA of the potato spindle tuber viroid did not allow binding.  相似文献   

12.
Hepatitis delta virus (HDV) RNA subfragments undergo self-cleavage at varying efficiencies. We have developed a procedure of using repeated cycles of heat denaturation and renaturation of RNA to achieve a high efficiency of cleavage. This effect can also be achieved by gradual denaturation of RNA with heat or formamide. These results suggest that only a subpopulation of the catalytic RNA molecules assumes the active conformation required for self-cleavage. This procedure could be of general use for detecting catalytic RNA activities.  相似文献   

13.
The sequence requirements for self-cleavage of hepatitis delta virus genomic RNA were examined using precursor RNAs which were labeled at either the 5' or 3' ends and progressively deleted from the unlabeled end. In the presence of 50% formamide, which enhances self-cleavage in 2 mM MgCl2 at 37 degrees C, 84 nucleotides (nt) 3' of the break site were required. In the absence of formamide the minimum was reduced to 82 nt. Under both sets of conditions, precursors with 1 nt 5' to the break site cleaved. These results allowed two condition-dependent minimal domains for self-cleavage to be defined. However, in the absence of formamide, sequences flanking the minimal domain inhibited cleavage, possibly through involvement in the formation of non-cleaving structures. These data are consistent with the idea that cleavage in vivo could be regulated by alternative RNA structures.  相似文献   

14.
Chang J  Taylor JM 《Journal of virology》2003,77(17):9728-9731
In animal cells, small interfering RNAs (siRNA), when exogenously provided, have been reported to be capable of inhibiting replication of several different viruses. In preliminary studies, siRNA species were designed and tested for their ability to act on the protein expressed in Huh7 cells transfected with DNA-directed mRNA constructs containing hepatitis delta virus (HDV) target sequences. The aim was to achieve siRNA specific for each of the three RNAs of HDV replication: (i) the 1,679-nucleotide circular RNA genome, (ii) its exact complement, the antigenome, and (iii) the less abundant polyadenylated mRNA for the small delta protein. Many of the 16 siRNA tested gave >80% inhibition in this assay. Next, these three classes of siRNA were tested for their ability to act during HDV genome replication. It was found that only siRNA targeted against HDV mRNA sequences could interfere with HDV genome replication. In contrast, siRNA targeted against genomic and antigenomic RNA sequences had no detectable effect on the accumulation of these RNAs. Reconstruction experiments with nonreplicating HDV RNA sequences support the interpretation that neither the potential for intramolecular rod-like RNA folding nor the presence of the delta protein conferred resistance to siRNA. In terms of replicating HDV RNAs, it is considered more likely that the genomic and antigenomic RNAs are resistant because their location within the nucleus makes them inaccessible to siRNA-mediated degradation.  相似文献   

15.
16.
Human hepatitis delta virus (HDV) RNA has been shown to contain a self-catalyzed cleavage activity. The sequence requirement for its catalytic activity appears to be different from that of other known ribozymes. In this paper, we define the minimum contiguous sequence and secondary structure of the HDV genomic RNA required for the catalytic activity. By using nested-set deletion mutants, we have determined that the essential sequence for the catalytic activity is contained within no more than 85 nucleotides of HDV RNA. These results are in close agreement with the previous determinations and confirmed the relative insignificance of the sequence at the 5' side of the cleavage site. The smallest catalytic RNA, representing HDV genomic RNA nucleotide positions 683 to 770, was used as the basis for studying the secondary structure requirements for catalytic activity. Analysis of the RNA structure, using RNase V1, nuclease S1 and diethylpyrocarbonate treatments showed that this RNA contains at least two stem-and-loop structures. Other larger HDV RNA subfragments containing the catalytic activity also have a very similar secondary structure. By performing site-specific mutagenesis studies, it was shown that one of the stem-and-loop structures could be deleted to half of its original size without affecting the catalytic activity. In addition, the other stem-and-loop contained a six base-pair helix, and the structure, rather than the sequence, of this helix was required for the catalytic activity. However, the structure of a portion of the stem-and-loop remains uncertain. We also report that this RNA can be divided into two separate molecules, which alone did not have cleavage activity but, when mixed, one of the RNAs could be cleaved in trans. This study thus reveals some features of the secondary structure of the HDV genomic RNA involved in self-catalyzed cleavage. A model of this RNA structure is presented.  相似文献   

17.
Huang YH  Wu JC  Hsu SC  Syu WJ 《Journal of virology》2003,77(24):12980-12985
Whether the hepatitis delta virus (HDV) DNA vaccine can induce anti-HDV antibodies has been debatable. The role of the isoprenylated motif of hepatitis delta antigens (HDAg) in the generation of immune responses following DNA-based immunization has never been studied. Plasmids p2577L, encoding large HDAg (L-HDAg), p2577S, expressing small HDAg (S-HDAg), and p25L-211S, encoding a mutant form of L-HDAg with a cysteine-to-serine mutation at codon 211, were constructed in this study. Mice were intramuscularly injected with the plasmids. The anti-HDV antibody titers, T-cell proliferation responses, T-helper responses, and HDV-specific, gamma interferon (IFN-gamma)-producing CD8(+) T cells were analyzed. Animals immunized with p2577S showed a strong anti-HDV antibody response. Conversely, only a low titer of anti-HDV antibodies was detected in mice immunized with p2577L. Epitope mapping revealed that the anti-HDV antibodies generated by p2577L vaccination hardly reacted with epitope amino acids 174 to 194, located at the C terminus of S-HDAg. All of the HDAg-encoding plasmids could induce significant T-cell proliferation responses and generate Th1 responses and HDV-specific, IFN-gamma-producing CD8(+) T cells. In conclusion, HDAg-specific antibodies definitely exist following DNA vaccination. The magnitudes of the humoral immune responses generated by L-HDAg- and S-HDAg-encoding DNA vaccines are different. The isoprenylated motif can mask epitope amino acids 174 to 195 of HDAg but does not interfere with cellular immunity following DNA-based immunization. These findings are important for the choice of a candidate HDV DNA vaccine in the future.  相似文献   

18.
M F Chang  C Y Sun  C J Chen    S C Chang 《Journal of virology》1993,67(5):2529-2536
The functions of delta antigens (HDAgs) in the replication of hepatitis delta virus (HDV) have been identified previously. The small HDAg acts as a transactivator, whereas the large HDAg has a negative effect on replication. To understand the molecular mechanisms involved in the control of HDV replication, we have established a replication system in Huh-7 cells by cotransfecting a monomeric cDNA genome of HDV and a plasmid encoding the small HDAg. We demonstrate that a leucine repeat in the middle domain of the small HDAg is involved in binding to the HDV genome and transactivation of HDV replication. When the leucine repeat was disrupted by a substitution of valine for leucine at position 115, both RNA-binding and transactivation activity of the small HDAg were abolished. In contrast, the binding and transactivation activities were not affected when Leu-37 and Leu-44 of the small HDAg were replaced by valines. In addition, small and large HDAgs can interact with each other to form protein complexes in vitro. The complex formation that may lead to the trans-dominant negative regulation of large HDAg in HDV replication is mediated by a cryptic signal located between amino acid residues 35 and 65 other than the putative N-terminal leucine zipper motif. Furthermore, an extra 21-amino-acid extension near the N terminus converts the small HDAg into a pseudo-large HDAg with negative regulation activity of HDV replication even though the extreme C-terminal residue is unchanged.  相似文献   

19.
Editing on the genomic RNA of human hepatitis delta virus.   总被引:5,自引:2,他引:3       下载免费PDF全文
H Zheng  T B Fu  D Lazinski    J Taylor 《Journal of virology》1992,66(8):4693-4697
It has been shown previously that during replication of the genome of human hepatitis delta virus (HDV), a specific nucleotide change occurs to eliminate the termination codon for the small delta antigen (G. Luo, M. Chao, S.-Y. Hsieh, C. Sureau, K. Nishikura, and J. Taylor, J. Virol. 64:1021-1027, 1990). This change creates an extension in the length of the open reading frame for the delta antigen from 195 to 214 amino acids. These two proteins, the small and large delta antigens, have important and distinct roles in the life cycle of HDV. To further investigate the mechanism of this specific nucleotide alteration, we developed a sensitive assay involving the polymerase chain reaction to monitor changes on HDV RNA sequences as they occurred in transfected cells. We found that the substrate for the sequence change was the viral genomic RNA rather than the antigenomic RNA. This sequence change occurred independently of genome replication or the presence of the delta antigen. Less than full-length genomic RNA could act as a substrate, but only if it also contained a corresponding RNA sequences from the other side of the rodlike structure, which is characteristic of HDV. We were also able to reproduce the HDV base change in vitro, by addition of purified viral RNA to nuclear extracts of cells from a variety of species.  相似文献   

20.
Jenna S  Sureau C 《Journal of virology》1999,73(4):3351-3358
The carboxyl-terminal domain of the small (S) envelope protein of hepatitis B virus was subjected to mutagenesis to identify sequences important for the envelopment of the nucleocapsid during morphogenesis of hepatitis delta virus (HDV) virions. The mutations consisted of carboxyl-terminal truncations of 4 to 64 amino acid residues and small combined deletions and insertions spanning the entire hydrophobic domain between residues 163 and 224. Truncation of as few as 14 residues partially inhibited glycosylation and secretion of S and prevented assembly or stability of HDV virions. Short internal combined deletions and insertions were tolerated for secretion of subviral particles with the exceptions of those affecting residues 164 to 173 and 219 to 223. However, mutants competent for subviral particle secretion had a reduced capacity for HDV assembly compared to that of the wild type. One exception was a mutant carrying a deletion of residues 214 to 218, which exhibited a twofold increase in HDV assembly (or stability), whereas deletions of residues 179 to 183, 194 to 198, and 199 to 203 were the most inhibitory. Substitutions of single amino acids between residues 194 and 198 demonstrated that HDV assembly deficiency could be assigned to the replacement of the tryptophan residue at position 196. We concluded that assembly of stable HDV particles requires a specific function of the carboxyl terminus of S which is mediated at least in part by Trp-196.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号