首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Novel fluorogenic DNA probes are described. The probes (called Pleiades) have a minor groove binder (MGB) and a fluorophore at the 5′-end and a non-fluorescent quencher at the 3′-end of the DNA sequence. This configuration provides surprisingly low background and high hybridization-triggered fluorescence. Here, we comparatively study the performance of such probes, MGB-Eclipse probes, and molecular beacons. Unlike the other two probe formats, the Pleiades probes have low, temperature-independent background fluorescence and excellent signal-to-background ratios. The probes possess good mismatch discrimination ability and high rates of hybridization. Based on the analysis of fluorescence and absorption spectra we propose a mechanism of action for the Pleiades probes. First, hydrophobic interactions between the quencher and the MGB bring the ends of the probe and, therefore, the fluorophore and the quencher in close proximity. Second, the MGB interacts with the fluorophore and independent of the quencher is able to provide a modest (2–4-fold) quenching effect. Joint action of the MGB and the quencher is the basis for the unique quenching mechanism. The fluorescence is efficiently restored upon binding of the probe to target sequence due to a disruption in the MGB–quencher interaction and concealment of the MGB moiety inside the minor groove.  相似文献   

2.
DNA probes with conjugated minor groove binder (MGB) groups form extremely stable duplexes with single-stranded DNA targets, allowing shorter probes to be used for hybridization based assays. In this paper, sequence specificity of 3′-MGB probes was explored. In comparison with unmodified DNA, MGB probes had higher melting temperature (Tm) and increased specificity, especially when a mismatch was in the MGB region of the duplex. To exploit these properties, fluorogenic MGB probes were prepared and investigated in the 5′-nuclease PCR assay (real-time PCR assay, TaqMan assay). A 12mer MGB probe had the same Tm (65°C) as a no-MGB 27mer probe. The fluorogenic MGB probes were more specific for single base mismatches and fluorescence quenching was more efficient, giving increased sensitivity. A/T rich duplexes were stabilized more than G/C rich duplexes, thereby leveling probe Tm and simplifying design. In summary, MGB probes were more sequence specific than standard DNA probes, especially for single base mismatches at elevated hybridization temperatures.  相似文献   

3.
To date real-time quantitative PCR and gene expression microarrays are the methods of choice for quantification of nucleic acids. Herein, we described a unique fluorescence resonance energy transfer-based microarray platform for real-time quantification of nucleic acid targets that combines advantages of both and reduces their limitations. A set of 3′ amino-modified TaqMan probes were designed and immobilized on a glass slide composing a regular microarray pattern, and used as probes in the consecutive PCR carried out on the surface. During the extension step of the PCR, 5′ nuclease activity of DNA polymerase will cleave quencher dyes of the immobilized probe in the presence of nucleic acids targets. The increase of fluorescence intensities generated by the change in physical distance between reporter fluorophore and quencher moiety of the probes were collected by a confocal scanner. Using this new approach we successfully monitored five different pathogenic genomic DNAs and analyzed the dynamic characteristics of fluorescence intensity changes on the TaqMan probe array. The results indicate that the TaqMan probe array on a planar glass slide monitors DNA targets with excellent specificity as well as high sensitivity. This set-up offers the great advantage of real-time quantitative detection of DNA targets in a parallel array format.  相似文献   

4.
Displacement probes have recently been described as a novel probe-based detection system for use in both quantitative real-time polymerase chain reaction (PCR) and single nucleotide polymorphism genotyping analysis. Previous reports have shown that shorter probes (23 mer) had improved detection sensitivity relative to longer probes (29 mer), with the likely reason for this effect being the improved hybridization kinetics of shorter probes. Sterically modified locked nucleic acids (LNAs) have been used to improve the design of a range of real-time PCR probes by raising the melting temperature (Tm) of the probe and enabling shorter probe designs to be considered. A displacement probe for gapdh was designed and tested successfully, and this probe was then redesigned with LNAs to an 11 mer probe. This probe showed increased detection sensitivity compared with the original 26 mer probe. To detect the widest range of displacement probe designs at maximum sensitivity, we have also developed a novel fluorescence capture two-step PCR protocol. This method produces enhanced probe quenching with a single standardized protocol ideal for high-throughput applications. The displacement probes tested produced sensitive and efficient quantitative analyses of template serial dilutions when compared with a range of commercially available predesigned real-time PCR detection systems, including TaqMan MGB probes, QuantiTect MGB probes, and LUX primers.  相似文献   

5.
L G Lee  C R Connell    W Bloch 《Nucleic acids research》1993,21(16):3761-3766
Nick-translation PCR was performed with fluorogenic probes. Two probes were used: one complementary to a sequence containing the F508 codon of the normal human cystic fibrosis (CF) gene (wt DNA) and one complementary to a sequence containing the delta F508 three base pair deletion (mut DNA). Each probe contained a unique and spectrally resolvable fluorescent indicator dye at the 5' end and a common quencher dye attached to the seventh nucleotide from the 5' end. The F508/delta F508 site was located between the indicator and quencher. The probes were added at the start of a PCR containing mut DNA, wt DNA or heterozygous DNA and were degraded during thermal cycling. Although both probes were degraded, each probe generated fluorescence from its indicator dye only when the sequence between the indicator and quencher dyes was perfectly complementary to target. The identify of the target DNA could be determined from the post-PCR fluorescence emission spectrum.  相似文献   

6.
We have studied the use of 'pseudocyclic oligonucleotides' (PCOs) (Jiang et al. Bioorg. Med. Chem. 1999, 7, 2727) as hybridization-based fluorescent probes. The resulting fluorescent tag-attached PCOs are called 'cyclicons'. Cyclicons consist of two oligonucleotides linked to each other through 3'-3' or 5'-5' ends. One of the oligos is the probe or primer-probe sequence that is complementary to a target nucleic acid (mRNA/DNA), and the other is a modifier oligo that is complementary to one of the ends of the probe oligo. A fluorescence molecule and a quencher molecule are attached at an appropriate position in the cyclicons. In the absence of the target nucleic acid, the fluorophore and the quencher are brought in close proximity to each other because of the formation of an intramolecular cyclic structure, resulting in fluorescence quenching. When the cyclicon hybridizes to the complementary target nucleic acid strand, the intramolecular cyclic structure of the cyclicon is destabilized and opened up, separating the fluorophore and quencher groups, resulting in spontaneous fluorescence emission. Fluorescent studies in the presence and absence of a target nucleic acid suggest that cyclicons exist in intramolecular cyclic structure form in the absence of the target and form the duplex with the target sequence when present. Both the cyclicons are useful for nucleic acid detection. The studies with DNA polymerase on 5'-5'-attached cyclicons suggest that the presence of quencher moiety in the probe sequence does not inhibit chain elongation by polymerase. The experiments with a 5'-5'-attached cyclicon suggest the new design serves as an efficient unimolecular primer-probe in real-time PCR experiments.  相似文献   

7.
Real-time PCR data analysis for quantification has been the subject of many studies aimed at the identification of new and improved quantification methods. Several analysis methods have been proposed as superior alternatives to the common variations of the threshold crossing method. Notably, sigmoidal and exponential curve fit methods have been proposed. However, these studies have primarily analyzed real-time PCR with intercalating dyes such as SYBR Green. Clinical real-time PCR assays, in contrast, often employ fluorescent probes whose real-time amplification fluorescence curves differ from those of intercalating dyes. In the current study, we compared four analysis methods related to recent literature: two versions of the threshold crossing method, a second derivative maximum method, and a sigmoidal curve fit method. These methods were applied to a clinically relevant real-time human herpes virus type 6 (HHV6) PCR assay that used a minor groove binding (MGB) Eclipse hybridization probe as well as an Epstein-Barr virus (EBV) PCR assay that used an MGB Pleiades hybridization probe. We found that the crossing threshold method yielded more precise results when analyzing the HHV6 assay, which was characterized by lower signal/noise and less developed amplification curve plateaus. In contrast, the EBV assay, characterized by greater signal/noise and amplification curves with plateau regions similar to those observed with intercalating dyes, gave results with statistically similar precision by all four analysis methods.  相似文献   

8.
Duplex Scorpion primers in SNP analysis and FRET applications   总被引:12,自引:1,他引:11       下载免费PDF全文
Scorpions are fluorogenic PCR primers with a probe element attached at the 5′-end via a PCR stopper. They are used in real-time amplicon-specific detection of PCR products in homogeneous solution. Two different formats are possible, the ‘stem–loop’ format and the ‘duplex’ format. In both cases the probing mechanism is intramolecular. We have shown that duplex Scorpions are efficient probes in real-time PCR. They give a greater fluorescent signal than stem–loop Scorpions due to the vastly increased separation between fluorophore and quencher in the active form. We have demonstrated their use in allelic discrimination at the W1282X locus of the ABCC7 gene and shown that they can be used in assays where fluorescence resonance energy transfer is required.  相似文献   

9.
Strand displacement amplification (9SDA) is an isothermal in vitro method of amplifying a DNA sequence prior to its detection. We have combined SDA with fluorescence polarization detection. A 5'-fluorescein-labelled oligodeoxynucleotide detector probe hybridizes to the amplification product that rises in concentration during SDA and the single- to double strand conversion is monitored through an increase in fluorescence polarization. Detection sensitivity can be enhanced by using a detector probe containing an EcoRI recognition sequence at its 5'-end that is not homologous to the target sequence. During SDA the probe is converted to a fully double-stranded form that specifically binds a genetically modified form of the endonuclease EcoRI which lacks cleavage activity but retains binding specificity. We have applied this SDA detection system to a target sequence specific for Mycobacterium tuberculosis.  相似文献   

10.
Molecular beacons are stem-loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2'-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2'-O-methyl and 2'-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2'-O-methyl/RNA > 2'-deoxy/RNA > 2'-deoxy/DNA > 2'-O-methyl/DNA. The improved stability of the 2'-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2'-deoxy molecular beacons and RNA targets. However, the 2'-O-methyl molecular beacons hybridized to RNA more quickly than 2'-deoxy molecular beacons. For the pairs tested, the 2'-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.  相似文献   

11.
A rapid method for the detection of Hepatitis E Virus (HEV) was developed by utilizing nano-gold labeled oligonucleotide probes, silver stain enhancement and the microarray technique. The 5'-end -NH(2) modified oligonucleotide probes were immobilized on the surface of the chip base as the capture probe. The detection probe was made of the 3'-end -SH modified oligonucleotide probe and nano-gold colloid. The optimal concentrations of these two probes were determined. To test the detection sensitivity and specificity of this technique, a conservative fragment of the virus RNA was amplified by the RT-PCR/PCR one step amplification. The cDNA was hybridized with the capture probes and the detection probes on microarray. The detection signal was amplified by silver stain enhancement and could be identified by naked eyes.100 fM of amplicon could be detected out on the microarray. As the results, preparation of nano-gold was improved and faster. Development time also was shortened to 2 min. Thus, considering high efficiency, low cost, good specificity and high sensitivity, this technique is alternative for the detection of HEV.  相似文献   

12.
The fluorescence quenchers BHQ1 and BHQ2 can be modified by trace amounts of ammonium persulfate, used for initiating gel polymerization, in electrophoretic purification of TaqMan probes using a denaturing polyacrylamide gel. The case study of BHQ1 quencher has demonstrated that a Boyland–Sims reaction proceeds in the presence of ammonium persulfate to give the corresponding sulfate. The absorption maximum of the resulting quencher shifts to the short-wavelength region relative to the absorption maximum of the initial BHQ1. The TaqMan probe containing such a quencher is less efficient as compared with the probe carrying an unmodified BHQ1. The presence of fluorescein in TaqMan probe plays decisive role in this transformation: the quencher modification proceeds at a considerably lower rate when the fluorescein is absent or replaced with a rhodamine dye (for example, R6G). It is assumed that the observed reaction can take place in two ways—both in darkness and in the reaction of the quencher in an excited state due to energy transfer from the fluorophore irradiated by light.  相似文献   

13.
两种DNA探针杂交检测结核分支杆菌方法的研究   总被引:3,自引:0,他引:3  
为改进结核杆菌DNA探针的特异性与实用性,研制了以生物素标记的两种对结核分支杆菌特异的DNA探针:一个5’端标记的20bp的寡核苷酸探针和一个采用PCR方法合成的188bp长链探针。两种探针分别与结核分支杆菌的全染色体DNA,以及基因组上IS6110序列的一段317bp的PCR扩增产物进行斑点杂交,以碱性磷酸酶(AP)催化的染色反应检测,测试了两个探针的敏感性和特异性。系统地比较研究了两种探针杂交检测条件:探针的浓度选择,杂交温度与洗膜温度的选择,以及杂交与洗膜温度对检测的敏感性与特异性的影响。寡核苷酸探针和188bp探针杂交检测纯化结核分支杆菌基因组DNA的敏感性分别为100ng与6ng,杂交检测PCR产物的敏感性分别是400pg与50pg。两探针的最佳杂交浓度均为40~160ng/ml,最佳杂交温度分别是42℃与68℃,最佳洗膜温度分别是60℃与60~68℃之间。两种探针均仅与结核分支杆菌及BCG有杂交信号,而与其它受试分支杆菌及非分支杆菌杂交结果都呈阴性。它们的特异性都很强,但188bp探针的敏感性约是寡核苷酸探针的7~16倍,而且188bp探针检测本底较低,是检测结核分支杆菌的较佳选择  相似文献   

14.
新型Taq Man-MGB探针在结核分枝杆菌实时PCR检测中的应用   总被引:3,自引:0,他引:3  
为建立一种比现有方法敏感、准确性高、重复性好的结核分枝杆菌DNA定性定量检测方法 ,以TaqMan探针技术为基础 ,运用TaqMan MGB探针 ,实时检测临床标本中的结核分枝杆菌DNA .用来自临床标本的DNA及克隆于载体的IS6 1 1 0序列检测所建立方法的有效性 .结果显示 ,所建立方法的最低检测限度为 1个基因拷贝 反应 ,在每反应 1 0 0 ~ 1 0 8拷贝范围内 ,Ct 值同DNA量的对数呈线性关系 .同一模板不同时间或同一时间不同管内扩增 ,所得Ct 值恒定 .用该方法检测 37例结核分枝杆菌培养阳性的痰液标本 ,敏感度为 1 0 0 % ;用该方法检测 1 6例TB系列阴性参考品 ,特异性为1 0 0 % .结果表明 ,所建立的方法是用于结核分枝杆菌定性定量检测较理想的方法  相似文献   

15.
Several fluorescence resonance energy transfer (FRET) oligonucleotide probes were made with different internal linkages between the DNA and the quencher dye. In one example, a 5'-fluorescein beta-actin-based 26-mer DNA sequence was synthesized bearing an internal Tamra quencher. Two different versions were prepared using either conventional C5 [N-(6-aminohexyl)-3-acrylamido]pyrimidine-modified uridine and solution-phase Tamra active ester coupling or solid-phase addition of a Tamra amidite to a C5 [N-(6-hydroxyhexyl)-3-acrylamido]pyrimidine-modified uridine. The products were compared in functional assays. They performed very similarly both in a fluorescence-based melting point assay as well as in quantitative PCR. Another set of beta-actin probes were synthesized utilizing N4 [N-2-(ethylene glycol ethyl)-5-methyl]cytidine and solid-phase Tamra amidite addition at positions flanking those of the uridine. These versions gave lower T(m)s than either uridine-labeled probe and did not work as well in quantitative PCR. A control experiment using oligonucleotides with the same modified residues but without fluorophores attached revealed the same trend as the T(m) study of internal Tamra-labeled probes. Experimental details for the synthesis, purification, and testing are presented.  相似文献   

16.
The design and operating parameters affecting the performance of 5' nuclease PCR (TaqMan) assays for the detection of Listeria monocytogenes was investigated. A system previously developed and based on the hlyA gene was used as a model [Appl. Environ. Microbiol. 61 (1995) 3724]. A series of fluorogenic probes labeled with a reporter and a quencher dye was synthesized to explore the effect of probe position and sequence content on the efficiency of probe hydrolysis. In addition, a series of PCR primer pairs that altered the distance between the upstream primer and the interceding probe was examined. The effects of various assay parameters were evaluated by measuring the ratio of the fluorescence intensity of the reporter dye over the quencher dye (deltaRQ). For a given probe sequence, the deltaRQ was typically lower if the 5' terminus was a G residue. Decreasing the probe concentration increased the deltaRQ, although this was at the expense of reproducibility in the assay readout. The distance between the upstream primer and the interceding probe has a significant effect on probe hydrolysis. Reducing the primer-probe distance from, for example, 127 to 4 nt increased the deltaRQ from 2.87 to 5.00. These general rules were used to develop a 5' nuclease PCR (TaqMan) assay with enhanced signal output, providing higher and more reproducible deltaRQ values for L. monocytogenes detection.  相似文献   

17.
Large-scale screening for known polymorphisms will require techniques with few steps and the ability to automate each of these steps. In this regard, the 5′ nuclease, or TaqMan, PCR assay is especially attractive. A fluorogenic probe, consisting of an oligonucleotide labeled with both a fluorescent reporter dye and a quencher dye, is included in a typical PCR. Amplification of the probe-specific product causes cleavage of the probe, generating an increase in reporter fluorescence. By using different reporter dyes, cleavage of allele-specific probes can be detected in a single PCR. The 5′ nuclease assay has been successfully used to discriminate alleles that differ by a single base substitution. Guidelines have been developed so that an assay for any single nucleotide polymorphism (SNP) can be quickly designed and implemented. All assays are performed using a single reaction buffer and single thermocycling protocol. Furthermore, a standard method of analysis has been developed that enables automated genotype determination. Applications of this assay have included typing a number of polymorphisms in human drug metabolism genes.  相似文献   

18.
We have recently reported that Adap (adenosine-1,3-diazaphenoxazine) is an artificial nucleoside analogue for the specific recognition by multiple hydrogen bonding and that its fluorescence is selectively quenched with 8-oxo-2'-deoxyguanosine (8-oxo-dG) in DNA. We now report the development of a new OFF-to-ON type FRET probe, in which one strand contains Adap and another contains natural nucleotides for the formation of a less stable double strand. Each strand was labeled with Cy3 or BHQ2 at the 5'-end or 3'-end, respectively. It was expected in this system that fluorescence of the duplex probe is first quenched by FRET, but the target DNA strand containing 8-oxo-dG at the complementary site of Adap would enhance the displacement reaction of the less stable duplex probe that results in the fluorescence recovery. The results showed that the duplex probe containing the Adap-T base pair exhibited a complete discrimination between 8-oxo-dG and dG in DNA by fluorescence enhancement.  相似文献   

19.
In this work, we studied the fluorescence and hybridization of multiply-labeled DNA probes which have the hydrophilic fluorophore 1-(straightepsilon-carboxypentynyl)-1'-ethyl- 3,3,3', 3'-tetramethylindocarbocyanine-5,5'-disulfonate (Cy3) attached via either a short or long linker at the C-5 position of deoxyuridine. We describe the effects of labeling density, fluorophore charge and linker length upon five properties of the probe: fluorescence intensity, the change in fluorescence upon duplex formation, the quantum yield of fluorescence (Phif), probe-target stability and specificity. For the hydrophilic dye Cy3, we have demonstrated that the fluorescence intensity andPhifare maximized when labeling every 6th base using the long linker. With a less hydrophilic dye, a labeling density this high could not be achieved without serious quenching of the fluorescence. The target specificity of multiply-labeled DNA probes was just as high as compared to the unmodified control probe, however, a less stable probe-target duplex is formed that exhibits a lower melting temperature. A mechanism that accounts for this destabilization is proposed which is consistent with our data. It involves dye-dye and dye-nucleotide interactions which appear to stabilize a single-stranded conformation of the probe.  相似文献   

20.
Real-time PCR assays have recently been developed for diagnostic and research purposes. Signal generation in real-time PCR is achieved with probe designs that usually depend on exonuclease activity of DNA polymerase (e.g. TaqMan probe) or oligonucleotide hybridization (e.g. molecular beacon). Probe design often needs to be specifically tailored either to tolerate or to differentiate between sequence variations. The conventional probe technologies offer limited flexibility to meet these diverse requirements. Here, we introduce a novel partially double-stranded linear DNA probe design. It consists of a hybridization probe 5'-labeled with a fluorophore and a shorter quencher oligo of complementary sequence 3'-labeled with a quencher. Fluorescent signal is generated when the hybridization probe preferentially binds to amplified targets during PCR. This novel class of probe can be thermodynamically modulated by adjusting (i) the length of hybridization probe, (ii) the length of quencher oligo, (iii) the molar ratio between the two strands and (iv) signal detection temperature. As a result, pre-amplification signal, signal gain and the extent of mismatch discrimination can be reliably controlled and optimized. The applicability of this design strategy was demonstrated in the Abbott RealTime HIV-1 assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号