首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After a complete spinal cord injury, sea lampreys at first are paralyzed below the level of transection. However, they recover locomotion after several weeks, and this is accompanied by short distance regeneration (a few mm) of propriospinal axons and spinal-projecting axons from the brainstem. Among the 36 large identifiable spinal-projecting neurons, some are good regenerators and others are bad regenerators. These neurons can most easily be identified in wholemount CNS preparations. In order to understand the neuron-intrinsic mechanisms that favor or inhibit axon regeneration after injury in the vertebrates CNS, we determine differences in gene expression between the good and bad regenerators, and how expression is influenced by spinal cord transection. This paper illustrates the techniques for housing larval and recently transformed adult sea lampreys in fresh water tanks, producing complete spinal cord transections under microscopic vision, and preparing brain and spinal cord wholemounts for in situ hybridization. Briefly, animals are kept at 16 °C and anesthetized in 1% Benzocaine in lamprey Ringer. The spinal cord is transected with iridectomy scissors via a dorsal approach and the animal is allowed to recover in fresh water tanks at 23 °C. For in situ hybridization, animals are reanesthetized and the brain and cord removed via a dorsal approach.  相似文献   

2.
The sea lamprey has been used as a model for the study of axonal regeneration after spinal cord injury. Previous studies have suggested that, unlike developing axons in mammal, the tips of regenerating axons in lamprey spinal cord are simple in shape, packed with neurofilaments (NFs), and contain very little F-actin. Thus it has been proposed that regeneration of axons in the central nervous system of mature vertebrates is not based on the canonical actin-dependent pulling mechanism of growth cones, but involves an internal protrusive force, perhaps generated by the transport or assembly of NFs in the distal axon. In order to assess this hypothesis, expression of NFs was manipulated by antisense morpholino oligonucleotides (MO). A standard, company-supplied MO was used as control. Axon retraction and regeneration were assessed at 2, 4 and 9 weeks after MOs were applied to a spinal cord transection (TX) site. Antisense MO inhibited NF180 expression compared to control MO. The effect of inhibiting NF expression on axon retraction and regeneration was studied by measuring the distance of axon tips from the TX site at 2 and 4 weeks post-TX, and counting the number of reticulospinal neurons (RNs) retrogradely labeled by fluorescently-tagged dextran injected caudal to the injury at 9 weeks post-TX. There was no statistically significant effect of MO on axon retraction at 2 weeks post-TX. However, at both 4 and 9 weeks post-TX, inhibition of NF expression inhibited axon regeneration.  相似文献   

3.
GSK-3β signaling is involved in regulation of both neuronal and glial cell functions, and interference of the signaling affects central nervous system (CNS) development and regeneration. Thus, GSK-3β was proposed to be an important therapeutic target for promoting functional recovery of adult CNS injuries. To further clarify the regulatory function of the kinase on the CNS regeneration, we characterized gecko GSK-3β and determined the effects of GSK-3β inactivation on the neuronal and glial cell lines, as well as on the gecko tail (including spinal cord) regeneration. Gecko GSK-3β shares 91.7-96.7% identity with those of other vertebrates, and presented higher expression abundance in brain and spinal cord. The kinase strongly colocalized with the oligodendrocytes while less colocalized with neurons in the spinal cord. Phosphorylated GSK-3β (pGSK-3β) levels decreased gradually during the normally regenerating spinal cord ranging from L13 to the 6th caudal vertebra. Lithium injection increased the pGSK-3β levels of the corresponding spinal cord segments, and in vitro experiments on neurons and oligodendrocyte cell line revealed that the elevation of pGSK-3β promoted elongation of neurites and oligodendrocyte processes. In the normally regenerate tails, pGSK-3β kept stable in 2 weeks, whereas decreased at 4 weeks. Injection of lithium led to the elevation of pGSK-3β levels time-dependently, however destructed the regeneration of the tail including spinal cord. Bromodeoxyuridine (BrdU) staining demonstrated that inactivation of GSK-3β decreased the proliferation of blastemal cells. Our results suggested that species-specific regulation of GSK-3β was indispensable for the complete regeneration of CNS.  相似文献   

4.
Bacterial chondroitinase ABC (ChaseABC) has been used to remove the inhibitory chondroitin sulfate chains from chondroitin sulfate proteoglycans to improve regeneration after rodent spinal cord injury. We hypothesized that the mammalian enzyme arylsulfatase B (ARSB) would also enhance recovery after mouse spinal cord injury. Application of the mammalian enzyme would be an attractive alternative to ChaseABC because of its more robust chemical stability and reduced immunogenicity. A one-time injection of human ARSB into injured mouse spinal cord eliminated immunoreactivity for chondroitin sulfates within five days, and up to 9 weeks after injury. After a moderate spinal cord injury, we observed improvements of locomotor recovery assessed by the Basso Mouse Scale (BMS) in ARSB treated mice, compared to the buffer-treated control group, at 6 weeks after injection. After a severe spinal cord injury, mice injected with equivalent units of ARSB or ChaseABC improved similarly and both groups achieved significantly more locomotor recovery than the buffer-treated control mice. Serotonin and tyrosine hydroxylase immunoreactive axons were more extensively present in mouse spinal cords treated with ARSB and ChaseABC, and the immunoreactive axons penetrated further beyond the injury site in ARSB or ChaseABC treated mice than in control mice. These results indicate that mammalian ARSB improves functional recovery after CNS injury. The structural/molecular mechanisms underlying the observed functional improvement remain to be elucidated.  相似文献   

5.
The cell neural adhesion molecule contactin-2 plays a key role in axon extension and guidance, fasciculation, and myelination during development. We thus asked, whether contactin-2 is also important in nervous system regeneration after trauma. In this study, we used an adult zebrafish spinal cord transection model to test the functions of contactin-2 in spinal cord regeneration. The expression patterns of contactin-2 at different time points after spinal cord injury were studied at the mRNA level by qPCR and in situ hybridization, and contactin-2 protein levels and immunohistological localization were detected by Western blot and immunofluorescence analyses, respectively. Contactin-2 mRNA and protein levels were increased along the central canal at 6 days and 11 days after spinal cord injury, suggesting a requirement for contactin-2 in spinal cord regeneration. Co-localization of contactin-2 and islet-1 (a motoneuron marker) was observed in spinal cords before and after injury. To further explore the functions of contactin-2 in regeneration, an anti-sense morpholino was used to knock down the expression of contactin-2 protein by application at the time of injury. Motion analysis showed that inhibition of contactin-2 retarded the recovery of swimming functions when compared to standard control morpholino. Anterograde and retrograde tracing at 6 weeks after injury showed that knock down of contactin-2 inhibited axonal regrowth from NMLF neurons beyond lesion site. The combined observations indicate that contactin-2 contributes to locomotor recovery and successful regrowth of axons after spinal cord injury in adult zebrafish.  相似文献   

6.
Unlike mammals, adult zebrafish are capable of regenerating severed axons and regaining locomotor function after spinal cord injury. A key factor for this regenerative capacity is the innate ability of neurons to re-express growth-associated genes and regrow their axons after injury in a permissive environment. By microarray analysis, we have previously shown that the expression of legumain (also known as asparaginyl endopeptidase) is upregulated after complete transection of the spinal cord. In situ hybridization showed upregulation of legumain expression in neurons of regenerative nuclei during the phase of axon regrowth/sprouting after spinal cord injury. Upregulation of Legumain protein expression was confirmed by immunohistochemistry. Interestingly, upregulation of legumain expression was also observed in macrophages/microglia and neurons in the spinal cord caudal to the lesion site after injury. The role of legumain in locomotor function after spinal cord injury was tested by reducing Legumain expression by application of anti-sense morpholino oligonucleotides. Using two independent anti-sense morpholinos, locomotor recovery and axonal regrowth were impaired when compared with a standard control morpholino. We conclude that upregulation of legumain expression after spinal cord injury in the adult zebrafish is an essential component of the capacity of injured neurons to regrow their axons. Another feature contributing to functional recovery implicates upregulation of legumain expression in the spinal cord caudal to the injury site. In conclusion, we established for the first time a function for an unusual protease, the asparaginyl endopeptidase, in the nervous system. This study is also the first to demonstrate the importance of legumain for repair of an injured adult central nervous system of a spontaneously regenerating vertebrate and is expected to yield insights into its potential in nervous system regeneration in mammals.  相似文献   

7.
At least three proteins present in CNS myelin, Nogo, MAG and OMgp are capable of causing growth cone collapse and inhibiting neurite outgrowth in vitro. Surprisingly, Nogo and OMgp are also strongly expressed by many neurons (including neocortical projection cells). Nogo expression is increased by some cells at the borders of CNS lesion sites and by cells in injured peripheral nerves, but Nogo and CNS myelin are largely absent from spinal cord injury sites, which are none the less strongly inhibitory to axonal regeneration. Nogo is found on growing axons during development, suggesting possible functions for neuronal Nogo in axon guidance. Although Nogo, MAG and OMgp lack sequence homologies, they all bind to the Nogo receptor (NgR), a GPI-linked cell surface molecule which, in turn, binds p75 to activate RhoA. NgR is strongly expressed by cerebral cortical neurons but many other neurons express NgR weakly or not at all. Some neurons, such as DRG cells, respond to Nogo and CNS myelin in vitro although they express little or no NgR in vivo which, with other data, indicates that other receptors are available for NgR ligands. NgR expression is unaffected by injury to the nervous system, and there is no clear correlation between NgR expression by neurons and lack of regenerative ability. In the injured spinal cord, interactions between NgR and its ligands are most likely to be important for limiting regeneration of corticospinal and some other descending tracts; other receptors may be more important for ascending tracts. Antibodies to Nogo, mainly the poorly-characterised IN-1 or its derivatives, have been shown to enhance recovery from partial transections of the spinal cord. They induce considerable plasticity from the axons of corticospinal neurons, including sprouting across the midline and, to a limited extent, regeneration around the lesion. Regeneration of corticospinal axons induced by Nogo antibodies has not yet been demonstrated after complete transections or contusion injuries of the spinal cord. It is not clear whether antibodies against Nogo act on oligodendrocytes/myelin or by binding to neuronal Nogo, or whether they can stimulate regeneration of ascending axons in the spinal cord, most of which express little or no NgR. Despite these uncertainties, however, NgR and its ligands offer important new targets for enhancing plasticity and regeneration in the nervous system.  相似文献   

8.
It is well known that mature neurons in the central nervous system (CNS) cannot regenerate their axons after injuries due to diminished intrinsic ability to support axon growth and a hostile environment in the mature CNS1,2. In contrast, mature neurons in the peripheral nervous system (PNS) regenerate readily after injuries3. Adult dorsal root ganglion (DRG) neurons are well known to regenerate robustly after peripheral nerve injuries. Each DRG neuron grows one axon from the cell soma, which branches into two axonal branches: a peripheral branch innervating peripheral targets and a central branch extending into the spinal cord. Injury of the DRG peripheral axons results in substantial axon regeneration, whereas central axons in the spinal cord regenerate poorly after the injury. However, if the peripheral axonal injury occurs prior to the spinal cord injury (a process called the conditioning lesion), regeneration of central axons is greatly improved4. Moreover, the central axons of DRG neurons share the same hostile environment as descending corticospinal axons in the spinal cord. Together, it is hypothesized that the molecular mechanisms controlling axon regeneration of adult DRG neurons can be harnessed to enhance CNS axon regeneration. As a result, adult DRG neurons are now widely used as a model system to study regenerative axon growth5-7.Here we describe a method of adult DRG neuron culture that can be used for genetic study of axon regeneration in vitro. In this model adult DRG neurons are genetically manipulated via electroporation-mediated gene transfection6,8. By transfecting neurons with DNA plasmid or si/shRNA, this approach enables both gain- and loss-of-function experiments to investigate the role of any gene-of-interest in axon growth from adult DRG neurons. When neurons are transfected with si/shRNA, the targeted endogenous protein is usually depleted after 3-4 days in culture, during which time robust axon growth has already occurred, making the loss-of-function studies less effective. To solve this problem, the method described here includes a re-suspension and re-plating step after transfection, which allows axons to re-grow from neurons in the absence of the targeted protein. Finally, we provide an example of using this in vitro model to study the role of an axon regeneration-associated gene, c-Jun, in mediating axon growth from adult DRG neurons9.  相似文献   

9.
Axon regeneration in young adult mice lacking Nogo-A/B   总被引:53,自引:0,他引:53  
Kim JE  Li S  GrandPré T  Qiu D  Strittmatter SM 《Neuron》2003,38(2):187-199
After injury, axons of the adult mammalian brain and spinal cord exhibit little regeneration. It has been suggested that axon growth inhibitors, such as myelin-derived Nogo, prevent CNS axon repair. To investigate this hypothesis, we analyzed mice with a nogo mutation that eliminates Nogo-A/B expression. These mice are viable and exhibit normal locomotion. Corticospinal tract tracing reveals no abnormality in uninjured nogo-A/B(-/-) mice. After spinal cord injury, corticospinal axons of young adult nogo-A/B(-/-) mice sprout extensively rostral to a transection. Numerous fibers regenerate into distal cord segments of nogo-A/B(-/-) mice. Recovery of locomotor function is improved in these mice. Thus, Nogo-A plays a role in restricting axonal sprouting in the young adult CNS after injury.  相似文献   

10.
Spinal cord injuries (SCIs) in humans and experimental animals are often associated with varying degrees of spontaneous functional recovery during the first months after injury. Such recovery is widely attributed to axons spared from injury that descend from the brain and bypass incomplete lesions, but its mechanisms are uncertain. To investigate the neural basis of spontaneous recovery, we used kinematic, physiological and anatomical analyses to evaluate mice with various combinations of spatially and temporally separated lateral hemisections with or without the excitotoxic ablation of intrinsic spinal cord neurons. We show that propriospinal relay connections that bypass one or more injury sites are able to mediate spontaneous functional recovery and supraspinal control of stepping, even when there has been essentially total and irreversible interruption of long descending supraspinal pathways in mice. Our findings show that pronounced functional recovery can occur after severe SCI without the maintenance or regeneration of direct projections from the brain past the lesion and can be mediated by the reorganization of descending and propriospinal connections. Targeting interventions toward augmenting the remodeling of relay connections may provide new therapeutic strategies to bypass lesions and restore function after SCI and in other conditions such as stroke and multiple sclerosis.  相似文献   

11.
Accordingly to its known function in corticospinal tract (CST) developmental growth, previous reports have shown an inhibitory role of Wnt5a in CST regeneration after spinal cord injury (SCI). Interestingly, it has been subsequently demonstrated that Wnt5a also modulates the developmental growth of non-CST axons and that different Wnt5a receptors are expressed in neurons, oligodendrocytes, NG2+ glial precursors and reactive microglia/macrophages and astrocytes after SCI. However, the role of Wnt5a in the response of these cell types, in the regeneration of non-CST axons and in functional recovery after SCI is currently unknown. To evaluate this, rats were subjected to spinal cord contusion and injected with a lentiviral vector generated to overexpress Wnt5a. Histological analyses were performed in spinal cord sections processed for the visualization of myelin, oligodendrocytes, neurons, microglia/macrophages, astrocytes, NG2+ glial precursors and serotonergic axons. Motor and bladder function recovery were also assessed. Further advancing our knowledge on the role of Wnt5a in SCI, we found that, besides its previously reported functions, Wnt5a overexpression elicits a reduction on neuronal cell density, the accumulation of NG2+ glial precursors and the descending serotonergic innervation in the affected areas, along with impairment of motor and bladder function recovery after SCI.  相似文献   

12.
Unlike mammals, fish motor function can recover within 6–8 weeks after spinal cord injury (SCI). The motor function of zebrafish is regulated by dual control; the upper motor neurons of the brainstem and motor neurons of the spinal cord. In this study, we aimed to investigate the framework behind the regeneration of upper motor neurons in adult zebrafish after SCI. In particular, we investigated the cell survival of axotomized upper motor neurons and its molecular machinery in zebrafish brain. As representative nuclei of upper motor neurons, we retrogradely labeled neurons in the nucleus of medial longitudinal fasciculus (NMLF) and the intermediate reticular formation (IMRF) using a tracer injected into the lesion site of the spinal cord. Four to eight neurons in each thin sections of the area of NMLF and IMRF were successfully traced at least 1–15 days after SCI. TUNEL staining and BrdU labeling assay revealed that there was no apoptosis or cell proliferation in the axotomized neurons of the brainstem at various time points after SCI. In contrast, axotomized neurons labeled with a neurotracer showed increased expression of anti-apoptotic factors, such as Bcl-2 and phospho-Akt (p-Akt), at 1–6 days after SCI. Such a rapid increase of Bcl-2 and p-Akt protein levels after SCI was quantitatively confirmed by western blot analysis. These data strongly indicate that upper motor neurons in the NMLF and IMRF can survive and regrow their axons into the spinal cord through the rapid activation of anti-apoptotic molecules after SCI. The regrowing axons from upper motor neurons reached the lesion site at 10–15 days and then crossed at 4–6 weeks after SCI. These long-distance descending axons from originally axotomized neurons have a major role in restoration of motor function after SCI.  相似文献   

13.
Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC) injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9–T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early adaptive plasticity mechanisms underlying functional recovery as well as the capacity for human stem cell-derived neurons to integrate functionally into spinal circuits.  相似文献   

14.
Glutamate is the main excitatory neurotransmitter involved in spinal cord circuits in vertebrates, but in most groups the distribution of glutamatergic spinal neurons is still unknown. Lampreys have been extensively used as a model to investigate the neuronal circuits underlying locomotion. Glutamatergic circuits have been characterized on the basis of the excitatory responses elicited in postsynaptic neurons. However, the presence of glutamatergic neurochemical markers in spinal neurons has not been investigated. In this study, we report for the first time the expression of a vesicular glutamate transporter (VGLUT) in the spinal cord of the sea lamprey. We also study the distribution of glutamate in perikarya and fibers. The largest glutamatergic neurons found were the dorsal cells and caudal giant cells. Two additional VGLUT-positive gray matter populations, one dorsomedial consisting of small cells and another one lateral consisting of small and large cells were observed. Some cerebrospinal fluid-contacting cells also expressed VGLUT. In the white matter, some edge cells and some cells associated with giant axons (Müller and Mauthner axons) and the dorsolateral funiculus expressed VGLUT. Large lateral cells and the cells associated with reticulospinal axons are in a key position to receive descending inputs involved in the control of locomotion. We also compared the distribution of glutamate immunoreactivity with that of γ-aminobutyric acid (GABA) and glycine. Colocalization of glutamate and GABA or glycine was observed in some small spinal cells. These results confirm the glutamatergic nature of various neuronal populations, and reveal new small-celled glutamatergic populations, predicting that some glutamatergic neurons would exert complex actions on postsynaptic neurons.  相似文献   

15.
In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two ipsilateral burst generators may be modifiable and weakening when greater swimming maneuverability is required. Variable coupling of intrasegmental burst generators in the lamprey may be a precursor to the variable coupling of burst generators observed in the control of locomotion in the joints of limbed vertebrates.  相似文献   

16.
It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.  相似文献   

17.
Failure of injured axons to regenerate in the central nervous system (CNS) is the main obstacle for repair of stroke and traumatic injuries to the spinal cord and sensory roots. This regeneration failure is high-lighted at the dorsal root transitional zone (DRTZ), the boundary between the peripheral (PNS) and central nervous system where sensory axons enter the spinal cord. Injured sensory axons regenerate in the PNS compartment of the dorsal root but are halted as soon as they reach the DRTZ. The failure of regenerating dorsal root axons to re-enter the mature spinal cord is a reflection of the generally nonpermissive nature of the CNS environment, in contrast to the regeneration supportive properties of the PNS. The dorsal root injury paradigm is therefore an attractive model for studying mechanisms underlying CNS regeneration failure in general and how to overcome the hostile CNS environment. Here we review the main lines that have been pursued to achieve growth of injured dorsal root axons into the spinal cord: (i) modifying the inhibitory nature of the DRTZ by breaking down or blocking the effect of growth repelling molecules, (ii) stimulate elongation of injured dorsal root axons by a prior conditioning lesion or administration of specific growth factors, (iii) implantation of olfactory ensheathing cells to provide a growth supportive cellular terrain at the DRTZ, and (iv) replacing the regeneration deficient adult dorsal root ganglion neurons with embryonic neurons or neural stem cells.  相似文献   

18.
In larval lamprey, descending brain neurons, which regenerate their axons following spinal cord injury, were isolated and examined in cell culture to identify some of the factors that regulate neurite outgrowth. Focal application of 5 mM or 25 mM L-glutamate to single growth cones inhibited outgrowth of the treated neurite, but other neurites from the same neuron were not inhibited, an effect that has not been well studied for neurons in other systems. Glutamate-induced inhibition of neurite outgrowth was abolished by 10 mM kynurenic acid. Application of high potassium media to growth cones inhibited neurite outgrowth, an effect that was blocked by 2 mM cobalt or 100 microM cadmium, suggesting that calcium influx via voltage-gated channels contributes to glutamate-induced regulation of neurite outgrowth. Application of glutamate to growth cones in the presence of 2 microM omega-conotoxin MVIIC (CTX) still inhibited neurite outgrowth, while CTX blocked high potassium-induced inhibition of neurite outgrowth. Thus, CTX blocked virtually all of the calcium influx resulting from depolarization. To our knowledge, this is the first direct demonstration that calcium influx via ligand-gated ion channels can contribute to regulation of neurite outgrowth. Finally, focal application of glutamate to the cell bodies of descending brain neurons inhibited outgrowth of multiple neurites from the same neuron, and this is the first demonstration that multiple neurites can be regulated in this fashion. Signaling mechanisms involving intracellular calcium, similar to those shown here, may be important for regulating axonal regeneration following spinal cord injury in the lamprey.  相似文献   

19.
20.
After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis) in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC) or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn) of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU) to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord) and unaltered in neurogenic regions (dentate gyrus and SVZ) of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号