首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Because Francis Galton (1822–1911) was a well-connected gentleman scientist with substantial private means, the importance of the role he played in the professionalization of the Victorian life-sciences has been considered anomalous. In contrast to the X-clubbers, he did not seem to have any personal need for there forms his Darwinist colleagues were advocating. Nor for making common cause with individuals haling from social strata clearly inferior to his own. However, in this paper I argue that Galton quite realistically discerned in the reforming endeavors of the1860s, and beyond, the potential for considerably enhancing his own reputation and standing within both the scientific community and the broader Victorian culture. In addition, his professionalizing aspirations, and those of his reformist allies, were fully concordant with the interests, ambitions and perceived opportunities of his elite social group during the Victorian period. Professionalization appealed to gentlemen of Galton's status and financial security as much as it did to the likes of Thomas Huxley and John Tyndall, primarily because it promised to confer on the whole scientific enterprise an unprecedented level of social prestige. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Galton greeted Darwin's theory of pangenesis with enthusiasm, and tried to test the assumption that the hereditary particles circulate in the blood by transfusion experiments on rabbits. The failure of these experiments led him to reject this assumption, and in the 1870s he developed an alternative theory of heredity, which incorporated those parts of Darwin's theory that did not involve the transportation of hereditary particles throughout the system. He supposed that the fertilized ovum contains a large number of hereditary elements, which he collectively called the “stirp,” a few of which are patent, developing into particular cell types, while the rest remain latent; the latent elements can be transmitted to the next generation, while the patent elements, with rare exceptions, cannot since they have developed into cells. The problem with this theory is that it does not explain the similarity between parent and child unless there is a high correlation between latent and patent elements. Galton probably came to realize this problem during his subsequent statistical work on heredity, and he quietly dropped the idea that patent elements are not transmitted in Natural Inheritance (1889). Galton thought that brothers and sisters had identical stirps, and he attributed differences between them to variability in the choice of patent elements from the stirp, that is to say to developmental variability. He attributed the likeness of monozygotic twins to the similarity of their developmental environment. Galton's twin method was to track the life history changes of twins to see whether twins who were similar at birth diverged in dissimilar environments or whether twins who were dissimilar at birth converged in similar environments. It is quite different from the modern twin method of comparing the similarities between monozygotic and dizygotic twins, on the assumption that monozygotic twins are genetically identical whereas dizygotic twins are not. It has been argued that Galton foreshadowed Weismann's theory of the continuity of the germ-plasm, but this is only true in a weak sense. They both believed that the inheritance of acquired characters was either rare or impossible, but Galton did not forestall the essential part of Weismann's theory, that the germ-plasm of the zygote is doubled, with one part being reserved for the formation of the germ-cells. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Edward Tylor had envisioned anthropology to be comprised of ethnology and ethnography in equal parts, but today ethnography dominates the field. In this paper, we examine two reasons for the refugee status of ethnology. First, we look at the notorious "Galton effect." Second, we examine the problem of defining and using cultural units, particularly when positivistic and static theories and methods of culture have been largely discredited by anthropology. We argue against any formulaic solutions to these problems and show that for each research question one needs to reconsider the criteria for how to construct cultural units and how to ensure that the cultures under study are not merely replicas of one another. We show that previous solutions to these issues are limited because they fail to appreciate the contingent and multidimensional nature of culture. We also argue that, instead of a "Galton problem," there is actually a "Galton asset," which can be used to study historical and emergent communicative networks. [Keywords: cross–cultural research, Galton problem, cultural units, methods and theory]  相似文献   

4.
Contributions and promise of human behavioral genetics   总被引:3,自引:0,他引:3  
Human behavioral genetics has contributed greatly to our understanding of human behavioral development. Twin, family, and adoption studies have shown that genetic effects are ubiquitous and that both genes and environments contribute to individual differences in behavior. The unique ability of behavioral genetic methods to separate genetic from environmental effects has also led to important discoveries about how the environment works in development and to the elucidation of the complex ways environments and genes interact across the life span. Although quantitative methods have been the mainstay of the field of human behavioral genetics since Galton's time, the Human Genome Project and advances in molecular genetics are providing new tools and promise as we enter the 21st century. Thus the future of human behavioral genetics lies in the cross-disciplinary exchanges and collaborations that will increasingly occur in the years to come among quantitative and molecular scientists who work with both animal and human systems. This research may someday culminate in an understanding of the biological basis of behavior that spans from how the brain develops and functions to a grasp of how genes influence thought at the molecular level.  相似文献   

5.
In this paper, we show that the question of the relative importance of innate characteristics and institutional arrangements in explaining human difference was vehemently contested in Britain during the first half of the nineteenth century. Thus Sir Francis Galton's work of the 1860s should be seen as an intervention in a pre-existing controversy. The central figure in these earlier debates-as well as many later ones-was the philosopher and economist John Stuart Mill. In Mill's view, human nature was fundamentally shaped by history and culture, factors that accounted for most mental and behavioral differences between men and women and among people of different classes, nationalities, and races. Indeed, Mill's whole program of social reform depended on the assumption that human differences were not fixed by nature. To identify the leading figures in these disputes about difference and the concrete context in which they occurred, we explore three debates in which Mill played a key role: over the capacities and rights of women, the viability of peasant proprietorship in India and Ireland, and the status of black labor in Jamaica. The last two draw our attention to the important colonial context of the nature-nurture debate. We also show that ideas that for us seem of a piece were not always linked for these earlier thinkers, nor did views on innateness necessarily have the political correlates that we now take for granted.  相似文献   

6.
Ernst Mayr said that one of Darwin's greatest contributions was to show scholars the way to population thinking, and to help them discard a mindset of typological thinking. Population thinking rejects a focus on a central representative type, and emphasizes the variation among individuals. However, Mayr's choice of terms has led to confusion, particularly among biologists who study natural populations. Both population thinking and the concept of a biological population were inspired by Darwin, and from Darwin the chain for both concepts runs through Francis Galton who introduced the statistical usage of "population" that appears in Mayr's population thinking. It was Galton's "population" that was modified by geneticists and biometricians in the early 20th century to refer to an interbreeding and evolving community of organisms. Under this meaning, a population is a biological entity and so paradoxically population thinking, which emphasizes variation at the expense of dwelling on entities, is usually not about populations. Mayr did not address the potential for misunderstanding but for him the important part of the population concept was that the organisms within a population were variable, and so he probably thought there should not be confusion between population thinking and the concept of a population.  相似文献   

7.
Charles Darwin, James Clerk Maxwell, and Francis Galton were all aware, by various means, of Aldolphe Quetelet’s pioneering work in statistics. Darwin, Maxwell, and Galton all had reason to be interested in Quetelet’s work: they were all working on some instance of how large-scale regularities emerge from individual events that vary from one another; all were rejecting the divine interventionistic theories of their contemporaries; and Quetelet’s techniques provided them with a way forward. Maxwell and Galton all explicitly endorse Quetelet’s techniques in their work; Darwin does not incorporate any of the statistical ideas of Quetelet, although natural selection post-twentieth century synthesis has. Why not Darwin? My answer is that by the time Darwin encountered Malthus’s law of excess reproduction he had all he needed to answer about large scale regularities in extinctions, speciation, and adaptation. He didn’t need Quetelet.  相似文献   

8.
Over the past hundred years, since Sir Francis Galton first pointed out its scientific value, the study of twins has considerably widened its scope and significance. Gemellology has come to represent an important branch of human genetics and to be applied to the most diverse fields of biomedical and behavioral research, besides obviously contributing to the study of the specific biological, medical, and psychological aspects of the twin condition. More recently, then, it has in turn originated a new branch of modern genetic research, chronogenetics. Finally, sponsored and coordinated by the Mendel Institute in Rome, an International Society for Twins Studies has developed.  相似文献   

9.
Darwin believed that his theory of evolution would stand or fall on its ability to account for human behavior. No species could be an exception to his theory without imperiling the whole edifice. The ideas in the Descent of Man were widely discussed by his contemporaries although they were far from being the only evolutionary theories current in the late nineteenth century. Darwin's specific evolutionary ideas and those of his main followers had very little impact on the social sciences as they emerged as separate disciplines in the early Twentieth Century. Not until the late twentieth century were concerted, sophisticated efforts made to apply Darwinian theory to human behavior. Why such a long delay? We argue that Darwin's theory was rather modern in respects that conflicted with Victorian sensibilities and that he and his few close followers failed to influence any of the social sciences. The late Twentieth Century work takes up almost exactly where James Baldwin left off at the turn of the century.  相似文献   

10.
G. Bateson believed that the scientific school of the future would be ‘ecology of mind’. The first aim of this paper is to understand what he meant by ‘mind’, and the other is to understand how this concept emerged in his thought, i.e., how its meaning would become more flexible throughout his life and work. Furthermore, we will approach the epistemological implications of ecology of mind for scientific education in the West. Bateson’s concept of mind emerged when he became aware (in 1926) of his own way of thinking, i.e., of his immense abductive capacity. This led him to search for patterns of similarity and difference between organisms (like in homology). Later, he identified this thought process as being abstract and formal, relating not just facts but also ideas. Afterwards, Bateson developed criteria for us to consider a system as being mental, with special emphasis on living and cybernetic systems.  相似文献   

11.
Abstract

Galton believed that his data on hereditary genius support purely genetic inheritance. On the contrary, analysis under a simple model shows no clear resolution of genetic and cultural inheritance in this material, or generally, unless adoptive relations, monozygous twins, and/or environmental indices are included in a design adequate to test the assumptions under which they are informative.  相似文献   

12.
Neuroimaging research has largely focused on the identification of associations between brain activation and specific mental functions. Here we show that data mining techniques applied to a large database of neuroimaging results can be used to identify the conceptual structure of mental functions and their mapping to brain systems. This analysis confirms many current ideas regarding the neural organization of cognition, but also provides some new insights into the roles of particular brain systems in mental function. We further show that the same methods can be used to identify the relations between mental disorders. Finally, we show that these two approaches can be combined to empirically identify novel relations between mental disorders and mental functions via their common involvement of particular brain networks. This approach has the potential to discover novel endophenotypes for neuropsychiatric disorders and to better characterize the structure of these disorders and the relations between them.  相似文献   

13.
Frith CD  Frith U 《Neuron》2006,50(4):531-534
Mentalizing refers to our ability to read the mental states of other agents and engages many neural processes. The brain's mirror system allows us to share the emotions of others. Through perspective taking, we can infer what a person currently believes about the world given their point of view. Finally, the human brain has the unique ability to represent the mental states of the self and the other and the relationship between these mental states, making possible the communication of ideas.  相似文献   

14.
Social structure in human societies is underpinned by the variable expression of ideas about relatedness between different types of kin. We express these ideas through language in our kin terminology: to delineate who is kin and who is not, and to attach meanings to the types of kin labels associated with different individuals. Cross-culturally, there is a regular and restricted range of patterned variation in kin terminologies, and to date, our understanding of this diversity has been hampered by inadequate techniques for dealing with the hierarchical relatedness of languages (Galton’s Problem). Here I use maximum-likelihood and Bayesian phylogenetic comparative methods to begin to tease apart the processes underlying the evolution of kin terminologies in the Austronesian language family, focusing on terms for siblings. I infer (1) the probable ancestral states and (2) evolutionary models of change for the semantic distinctions of relative age (older/younger sibling) and relative sex (same-sex/opposite-sex). Analyses show that early Austronesian languages contained the relative-age, but not the relative-sex distinction; the latter was reconstructed firmly only for the ancestor of Eastern Malayo-Polynesian languages. Both distinctions were best characterized by evolutionary models where the gains and losses of the semantic distinctions were equally likely. A multi-state model of change examined how the relative-sex distinction could be elaborated and found that some transitions in kin terms were not possible: jumps from absence to heavily elaborated were very unlikely, as was piece-wise dismantling of elaborate distinctions. Cultural ideas about what types of kin distinctions are important can be embedded in the semantics of language; using a phylogenetic evolutionary framework we can understand how those distinctions in meaning change through time.  相似文献   

15.
Eye movements were monitored in 16 women and 20 men during completion of a standard diagram-based test of mental rotation ability to provide measures of cognitive function not requiring conscious, decisional processes. Overall, women and men allocated visual attention during task performance in very similar, systematic ways. However, consistent with previous suggestions that sex differences in attentional processes during completion of the mental rotation task may exist, eye movements in men compared to women indicated greater discrimination and longer processing of correct alternatives during task performance. Other findings suggested that androgens may enhance cognitive processes that are recruited differentially by women and men as a function of the task. Specifically, smaller (i.e., more masculine) digit ratios were associated with men's shorter fixations on distracters, suggesting that perinatal androgen action may influence brain systems that facilitate the identification of relevant task stimuli. In women, higher circulating testosterone levels appeared to contribute to more general processes engaged during task performance, for example higher levels of visual persistence. It is possible that variability in the relative contribution of such hormone sensitive cognitive processes to accuracy scores as a function of different sample characteristics or assessment methods may partially account for the inconsistent findings of previous research on hormonal factors in mental rotation ability.  相似文献   

16.
Metabolic theory aims to tackle ecological and evolutionary problems by explicitly including physical principles of energy and mass exchange, thereby increasing generality and deductive power. Individual growth models (IGMs) are the fundamental basis of metabolic theory because they represent the organisational level at which energy and mass exchange processes are most tightly integrated and from which scaling patterns emerge. Unfortunately, IGMs remain a topic of great confusion and controversy about the origins of the ideas, their domain and breadth of application, their logical consistency and whether they can sufficiently capture reality. It is now 100 years since the first theoretical model of individual growth was put forward by Pütter. His insights were deep, but his model ended up being attributed to von Bertalanffy and his ideas largely forgotten. Here I review Pütter's ideas and trace their influence on existing theoretical models for growth and other aspects of metabolism, including those of von Bertalanffy, the Dynamic Energy Budget (DEB) theory, the Gill-Oxygen Limitation Theory (GOLT) and the Ontogenetic Growth Model (OGM). I show that the von Bertalanffy and GOLT models are minor modifications of Pütter's original model. I then synthesise, compare and critique the ideas of the two most-developed theories, DEB theory and the OGM, in relation to Pütter's original ideas. I formulate the Pütter, DEB and OGM models in the same structure and with the same notation to illustrate the major similarities and differences among them. I trace the confusion and controversy regarding these theories to the notions of anabolism, catabolism, assimilation and maintenance, the connections to respiration rate, and the number of parameters and state variables their models require. The OGM model has significant inconsistencies that stem from the interpretation of growth as the difference between anabolism and maintenance, and these issues seriously challenge its ability to incorporate development, reproduction and assimilation. The DEB theory is a direct extension of Pütter's ideas but with growth being the difference between assimilation and maintenance rather than anabolism and catabolism. The DEB theory makes the dynamics of Pütter's ‘nutritive material’ explicit as well as extending the scheme to include reproduction and development. I discuss how these three major theories for individual growth have been used to explain ‘macrometabolic’ patterns including the scaling of respiration, the temperature–size rule (first modelled by Pütter), and the connection to life history. Future research on the connections between theory and data in these macrometabolic topics have the greatest potential to advance the status of metabolic theory and its value for pure and applied problems in ecology and evolution.  相似文献   

17.
The career of Marc Mareel is a synthesis of scientific research and clinical activity. During his medical studies, he already made his first enthusiastic steps in research via experimental work on avian developmental biology. Later, during his training as a radiotherapist, he founded his own laboratory for experimental cancer research. There he built up his international reputation as a pioneer in invasion research. Although invasion is the hallmark of tumor malignancy, he also kept an open mind about invasion in non-cancer conditions, such as in placental behavior, developmental biology, immunology and parasitology. His contribution to our understanding of invasion mechanisms has been both technical and conceptual. A number of assays have been developed in his lab, such as the embryonic chick heart and collagen gel invasion models, that have been (and still are) useful for many other research teams. He also contributed to the discovery of a number of key elements in the process of invasion, such as the stromal influence (including its extracellular matrix) and the cadherin family of cell-cell adhesion molecules. Concerning metastasis formation, he developed the original concept that a number of interacting eco-systems are implicated, such as the primary tumor, regional lymph nodes, the bone marrow and the (pre)metastatic niches in distant organs. Since his retirement, Marc Mareel has continued to integrate clinical practice with research creativity. He favours the idea of translational research bringing the results of laboratory findings to medical applications, and exploiting the feedback to the laboratory. The team in the Laboratory of Experimental Cancer Research at Ghent University currently consists of about 25 collaborators, who continue to appreciate his inspiring ideas and suggestions.  相似文献   

18.
Applications of finite-element scaling analysis in primatology   总被引:1,自引:0,他引:1  
The study of biological shape in three dimensions using landmark data can now be accomplished using several alternative methods. This report focuses on the use of finite-element scaling analysis in primate craniofacial morphology. The method is particularly useful in its ability to localize the differences between forms, thereby indicating those loci that differ most between specimens. Several examples of this feature are provided from primatological research. Particulars of the methods are also discussed in an attempt to provide the reader with cautionary knowledge for prudent application of the method in future research.  相似文献   

19.
A method for improving the original Galton microtechnique for detecting leptospiral antibodies has been developed. Simultaneous titrations were performed on 281 animal and human sera and 17 hyperimmune sera with the microscopic agglutination (MA) test and the improved microtechnique. Reproducibility of the improved microtechnique was determined independently on 65 animal sera by two laboratory sections. The results obtained by comparing positive test data from human and animal sera indicated that agreement between the original MA test and this new method exceeded 94%, whereas the original Galton microtechnique and the original MA test agreed in a maximum of 77% of the tests. This study indicates that the results obtained with the improved microtechnique are much more comparable to results obtained with the original MA test than are those obtained with the original Galton microtechnique.  相似文献   

20.
The composer Gaetano Donizetti, who died in a state of mental derangement due to neurosyphilis, created some of opera's greatest scenes of psychosis. His letters reveal the clinical progression of his neurobiological illness, which was confirmed by autopsy. One can hypothesize that the composer's brain disease, which led to his psychosis and death, may have had an influence on his ability to create the powerful and unforgettable scenes of psychosis in his operas. In Anna Bolena, he captured in musical and dramatic terms Anne Boleyn's historically corroborated mental disorder during her imprisonment in the Tower of London. Sixteen years after having composed Anna Bolena, Donizetti himself would be locked up, against his will, in a mental institution. In Lucia di Lammermoor, Donizetti portrayed a girl given to hallucinations who, in her unforgettable "mad" scene, comes on stage, a pathetic embodiment of a human being in the throes of psychosis. Thirteen years after Lucia's première, Donizetti would die, psychotic and paralyzed, of untreated neurosyphilis. Studying Donizetti's neurosyphilis and the portrayals of psychosis in his operas can help one to appreciate the pain of human beings trapped in the prison of a brain subjected to the devastation of mental derangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号