首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We measured production of reactive oxygen species by intact mitochondria from rat skeletal muscle, heart, and liver under various experimental conditions. By using different substrates and inhibitors, we determined the sites of production (which complexes in the electron transport chain produced superoxide). By measuring hydrogen peroxide production in the absence and presence of exogenous superoxide dismutase, we established the topology of superoxide production (on which side of the mitochondrial inner membrane superoxide was produced). Mitochondria did not release measurable amounts of superoxide or hydrogen peroxide when respiring on complex I or complex II substrates. Mitochondria from skeletal muscle or heart generated significant amounts of superoxide from complex I when respiring on palmitoyl carnitine. They produced superoxide at considerable rates in the presence of various inhibitors of the electron transport chain. Complex I (and perhaps the fatty acid oxidation electron transfer flavoprotein and its oxidoreductase) released superoxide on the matrix side of the inner membrane, whereas center o of complex III released superoxide on the cytoplasmic side. These results do not support the idea that mitochondria produce considerable amounts of reactive oxygen species under physiological conditions. Our upper estimate of the proportion of electron flow giving rise to hydrogen peroxide with palmitoyl carnitine as substrate (0.15%) is more than an order of magnitude lower than commonly cited values. We observed no difference in the rate of hydrogen peroxide production between rat and pigeon heart mitochondria respiring on complex I substrates. However, when complex I was fully reduced using rotenone, rat mitochondria released significantly more hydrogen peroxide than pigeon mitochondria. This difference was solely due to an elevated concentration of complex I in rat compared with pigeon heart mitochondria.  相似文献   

2.
The topology of superoxide generation by sn-glycerol 3-phosphate dehydrogenase and complex III in intact Drosophila mitochondria was studied using aconitase inactivation to measure superoxide production in the matrix, and hydrogen peroxide formation in the presence of superoxide dismutase to measure superoxide production from both sides of the membrane. Aconitase inactivation was calibrated using the known rate of matrix superoxide production from complex I. Glycerol phosphate dehydrogenase generated superoxide about equally to each side of the membrane, whereas centre o of complex III in the presence of antimycin A generated superoxide about 30% on the cytosolic side and 70% on the matrix side.  相似文献   

3.
Drosophila melanogaster is a key model organism for genetic investigation of the role of free radicals in aging, but biochemical understanding is lacking. Superoxide production by Drosophila mitochondria was measured fluorometrically as hydrogen peroxide, using its dependence on substrates, inhibitors, and added superoxide dismutase to determine sites of production and their topology. Glycerol 3-phosphate dehydrogenase and center o of complex III in the presence of antimycin had the greatest maximum capacities to generate superoxide on the cytosolic side of the inner membrane. Complex I had significant capacity on the matrix side. Center i of complex III, cytochrome c, and complex IV produced no superoxide. Native superoxide generation by isolated mitochondria was also measured without added inhibitors. There was a high rate of superoxide production with sn-glycerol 3-phosphate as substrate; two-thirds mostly from glycerol 3-phosphate dehydrogenase on the cytosolic side and one-third on the matrix side from complex I following reverse electron transport. There was little superoxide production from any site with NADH-linked substrate. Superoxide production by complex I following reverse electron flow from glycerol 3-phosphate was particularly sensitive to membrane potential, decreasing 70% when potential decreased 10 mV, showing that mild uncoupling lowers superoxide production in the matrix very effectively.  相似文献   

4.
Satomi Miwa 《BBA》2005,1709(3):214-219
The topology of superoxide generation by sn-glycerol 3-phosphate dehydrogenase and complex III in intact Drosophila mitochondria was studied using aconitase inactivation to measure superoxide production in the matrix, and hydrogen peroxide formation in the presence of superoxide dismutase to measure superoxide production from both sides of the membrane. Aconitase inactivation was calibrated using the known rate of matrix superoxide production from complex I. Glycerol phosphate dehydrogenase generated superoxide about equally to each side of the membrane, whereas centre o of complex III in the presence of antimycin A generated superoxide about 30% on the cytosolic side and 70% on the matrix side.  相似文献   

5.
Several reactions in biological systems contribute to maintain the steady-state concentrations of superoxide anion (O(2)*-) and hydrogen peroxide (H(2)O(2)). The electron transfer chain of mitochondria is a well documented source of H(2)O(2); however, the release of O(2)*- from mitochondria into cytosol has not been unequivocally established. This study was aimed at validating mitochondria as sources of cytosolic O(2)*-, elucidating the mechanisms underlying the release of O(2)*- from mitochondria into cytosol, and assessing the role of outer membrane voltage-dependent anion channels (VDACs) in this process. Isolated rat heart mitochondria supplemented with complex I or II substrates generate an EPR signal ascribed to O(2)*-. Inhibition of the signal in a concentration-dependent manner by both manganese-superoxide dismutase and cytochrome c proteins that cannot cross the mitochondrial membrane supports the extramitochondrial location of the spin adduct. Basal rates of O(2)*- release from mitochondria were estimated at approximately 0.04 nmol/min/mg protein, a value increased approximately 8-fold by the complex III inhibitor, antimycin A. These estimates, obtained by quantitative spin-trapping EPR, were confirmed by fluorescence techniques, mainly hydroethidine oxidation and horseradish peroxidase-based p-hydroxyphylacetate dimerization. Inhibitors of VDAC, 4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS), and dextran sulfate (in a voltage-dependent manner) inhibited O(2)*- production from mitochondria by approximately 55%, thus suggesting that a large portion of O(2)*- exited mitochondria via these channels. These findings are discussed in terms of competitive decay pathways for O(2)*- in the intermembrane space and cytosol as well as the implications of these processes for modulating cell signaling pathways in these compartments.  相似文献   

6.
Mitochondrial complex I has previously been shown to release superoxide exclusively towards the mitochondrial matrix, whereas complex III releases superoxide to both the matrix and the cytosol. Superoxide produced at complex III has been shown to exit the mitochondria through voltage dependent anion channels (VDAC). To test whether complex I-derived, mitochondrial matrix-directed superoxide can be released to the cytosol, we measured superoxide generation in mitochondria isolated from wild type and from mice genetically altered to be deficient in MnSOD activity (TnIFastCreSod2(fl/fl)). Under experimental conditions that produce superoxide primarily by complex I (glutamate/malate plus rotenone, GM+R), MnSOD-deficient mitochondria release ~4-fold more superoxide than mitochondria isolated from wild type mice. Exogenous CuZnSOD completely abolished the EPR-derived GM+R signal in mitochondria isolated from both genotypes, evidence that confirms mitochondrial superoxide release. Addition of the VDAC inhibitor DIDS significantly reduced mitochondrial superoxide release (~75%) in mitochondria from either genotype respiring on GM+R. Conversely, inhibition of potential inner membrane sites of superoxide exit, including the matrix face of the mitochondrial permeability transition pore and the inner membrane anion channel did not reduce mitochondrial superoxide release in the presence of GM+R in mitochondria isolated from either genotype. These data support the concept that complex I-derived mitochondrial superoxide release does indeed occur and that the majority of this release occurs through VDACs.  相似文献   

7.
Superoxide is released asymmetrically to both sides of the mitochondrial inner membrane. Because this membrane is impermeable to superoxide, two separate pools are formed at either side of the membrane, each with its own characteristics and potential biological effects. Here, we report an attomole-sensitive fast capillary electrophoretic method that can analyze superoxide in a single pool, either the matrix pool or that outside the mitochondria. The method uses triphenylphosphonium hydroethidine, which reacts with the superoxide in both pools. Centrifugation is used to separate the mitochondria (i.e., matrix contents) from the supernatant (i.e., products released outside the mitochondria). Each fraction is then analyzed by capillary electrophoresis with laser-induced fluorescence detection that separates and detects hydroxytriphenylphosphonium ethidium (OH-TPP-E+), the fluorescent superoxide-specific product. The separation takes < 3 min and the detection level is down to 3 amol OH-TPP-E+. The method has proved to be effective at detecting superoxide release qualitatively in the mitochondria of 143B cells, mouse liver, and rat skeletal muscle, in both the presence and the absence of inhibitors. In addition, this study confirmed that complex I releases superoxide only toward the matrix, whereas complex III releases superoxide toward both sides of the mitochondrial inner membrane. Furthermore, treatment with menadione induces superoxide release toward both sides of the mitochondrial inner membrane.  相似文献   

8.
The recent knowledge on mitochondria as the substantial source of reactive oxygen species, namely superoxide and hydrogen peroxide efflux from mitochondria, is reviewed, as well as nitric oxide and subsequent peroxynitrite generation in mitochondria and their effects. The reactive oxygen species formation in extramitochondrial locations, in peroxisomes, by cytochrome P450, and NADPH oxidase reaction, is also briefly discussed. Conditions are pointed out under which mitochondria represent the major ROS source for the cell: higher percentage of non-phosphorylating and coupled mitochondria, in vivo oxygen levels leading to increased intensity of the reverse electron transport in the respiratory chain, and nitric oxide effects on the redox state of cytochromes. We formulate hypotheses on the crucial role of ROS generated in mitochondria for the whole cell and organism, in concert with extramitochondrial ROS and antioxidant defense. We hypothesize that a sudden decline of mitochondrial ROS production converts cells or their microenvironment into a “ROS sink” represented by the instantly released excessive capacity of ROS-detoxification mechanisms. A partial but immediate decline of mitochondrial ROS production may be triggered by activation of mitochondrial uncoupling, specifically by activation of recruited or constitutively present uncoupling proteins such as UCP2, which may counterbalance the mild oxidative stress.  相似文献   

9.
Paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) is widely used as a redox cycler to stimulate superoxide production in organisms, cells, and mitochondria. This superoxide production causes extensive mitochondrial oxidative damage, however, there is considerable uncertainty over the mitochondrial sites of paraquat reduction and superoxide formation. Here we show that in yeast and mammalian mitochondria, superoxide production by paraquat occurs in the mitochondrial matrix, as inferred from manganese superoxide dismutase-sensitive mitochondrial DNA damage, as well as from superoxide assays in isolated mitochondria, which were unaffected by exogenous superoxide dismutase. This paraquat-induced superoxide production in the mitochondrial matrix required a membrane potential that was essential for paraquat uptake into mitochondria. This uptake was of the paraquat dication, not the radical monocation, and was carrier-mediated. Experiments with disrupted mitochondria showed that once in the matrix paraquat was principally reduced by complex I (mammals) or by NADPH dehydrogenases (yeast) to form the paraquat radical cation that then reacted with oxygen to form superoxide. Together this membrane potential-dependent uptake across the mitochondrial inner membrane and the subsequent rapid reduction to the paraquat radical cation explain the toxicity of paraquat to mitochondria.  相似文献   

10.
Antioxidants, such as ubiquinones, are widely used in mitochondrial studies as both potential therapies and useful research tools. However, the effects of exogenous ubiquinones can be difficult to interpret because they can also be pro-oxidants or electron carriers that facilitate respiration. Recently we developed a mitochondria-targeted ubiquinone (MitoQ10) that accumulates within mitochondria. MitoQ10 has been used to prevent mitochondrial oxidative damage and to infer the involvement of mitochondrial reactive oxygen species in signaling pathways. However, uncertainties remain about the mitochondrial reduction of MitoQ10, its oxidation by the respiratory chain, and its pro-oxidant potential. Therefore, we compared MitoQ analogs of varying alkyl chain lengths (MitoQn, n = 3-15) with untargeted exogenous ubiquinones. We found that MitoQ10 could not restore respiration in ubiquinone-deficient mitochondria because oxidation of MitoQ analogs by complex III was minimal. Complex II and glycerol 3-phosphate dehydrogenase reduced MitoQ analogs, and the rate depended on chain length. Because of its rapid reduction and negligible oxidation, MitoQ10 is a more effective antioxidant against lipid peroxidation, peroxynitrite and superoxide. Paradoxically, exogenous ubiquinols also autoxidize to generate superoxide, but this requires their deprotonation in the aqueous phase. Consequently, in the presence of phospholipid bilayers, the rate of autoxidation is proportional to ubiquinol hydrophilicity. Superoxide production by MitoQ10 was insufficient to damage aconitase but did lead to hydrogen peroxide production and nitric oxide consumption, both of which may affect cell signaling pathways. Our results comprehensively describe the interaction of exogenous ubiquinones with mitochondria and have implications for their rational design and use as therapies and as research tools to probe mitochondrial function.  相似文献   

11.
This study was conducted to determine function and defects in electron transport in muscle mitochondria of meat chickens (broilers) with pulmonary hypertension syndrome (PHS). The respiratory control ratio (RCR, indicative of respiratory chain coupling) was higher in the control than in PHS breast and heart muscle mitochondria, but there were no differences in the ADP/O (an index of oxidative phosphorylation). Sequential additions of ADP improved the RCR in the control breast muscle mitochondria and the ADP/O in PHS breast and heart muscle mitochondria. Basal hydrogen peroxide production, (an indicator of electron leak), was higher in PHS breast and heart muscle mitochondria than in controls and differences in electron leak in PHS mitochondria were magnified by inhibiting electron transport at Complex I and III (cyt b(562)). Complex I activity was lower in PHS heart mitochondria but there was no difference in Complex II activity. Thus, compared to controls, PHS mitochondria exhibited site-specific defects in electron transport within Complex I and III that could contribute to lower respiratory chain coupling. Additionally, it appears that healthy broilers may exhibit higher basal levels of electron leak compared to other avian species. Together, these findings provide insight into inefficient cellular use of oxygen that may contribute to the development of PHS in broilers.  相似文献   

12.
We have created P1 artificial chromosome transgenic mice expressing the human mitochondrial superoxide dismutase 2 (SOD2) and thus generated mice with a physiologically controlled augmentation of SOD2 expression leading to increased SOD2 enzyme activities and lowered superoxide levels. In the transgenic mice, effects on mitochondrial function such as enhanced oxidative capacity and greater resistance against inducers of mitochondrial permeability were observed. Superoxide in the mitochondrial matrix has been proposed to activate uncoupling proteins (UCPs), thus providing a feedback mechanism that will lower respiratory chain superoxide production by increasing a proton leak across the inner mitochondrial membrane. However, UCP1 and UCP3 activities and mitochondrial ATP production rates were not altered in isolated mitochondria from SOD2 transgenic mice, despite lowered superoxide levels. Globally, the transgenic mice displayed normal resting metabolic rates, indicating an absence of effect on any UCP activities, and normal oxygen consumption responses after norepinephrine injection. These results strongly suggest that endogenously generated matrix superoxide does not regulate UCP activity and in vivo energy expenditure.  相似文献   

13.
Mitochondrial uncoupling proteins only catalyse proton transport when they are activated. Activators include superoxide and reactive alkenals, suggesting new physiological functions for UCP2 and UCP3: their activation by superoxide when protonmotive force is high causes mild uncoupling, which lowers protonmotive force and attenuates superoxide generation by the electron transport chain. This feedback loop acts to prevent excessive mitochondrial superoxide production. Superoxide inactivates aconitase in the mitochondrial matrix, so aconitase activity provides a sensitive measure of the effects of UCPs on matrix superoxide. We find that inhibition of UCP3 in isolated skeletal muscle mitochondria by GDP decreases aconitase activity by 25% after 20 min incubation. The GDP effect is absent in skeletal muscle mitochondria from UCP3 knockout mice, showing that it is mediated by UCP3. Protection of aconitase by UCP3 in the absence of nucleotides does not require added fatty acids. The purine nucleoside diphosphates and triphosphates cause aconitase inactivation, but the monophosphates and CDP do not, consistent with the known nucleotide specificity of UCP3. The IC(50) for GDP is about 100 microM. These findings support the proposal that UCP3 attenuates endogenous radical production by the mitochondrial electron transport chain at high protonmotive force.  相似文献   

14.
Darren A. Talbot 《BBA》2005,1709(2):150-156
Mitochondrial uncoupling proteins only catalyse proton transport when they are activated. Activators include superoxide and reactive alkenals, suggesting new physiological functions for UCP2 and UCP3: their activation by superoxide when protonmotive force is high causes mild uncoupling, which lowers protonmotive force and attenuates superoxide generation by the electron transport chain. This feedback loop acts to prevent excessive mitochondrial superoxide production. Superoxide inactivates aconitase in the mitochondrial matrix, so aconitase activity provides a sensitive measure of the effects of UCPs on matrix superoxide. We find that inhibition of UCP3 in isolated skeletal muscle mitochondria by GDP decreases aconitase activity by 25% after 20 min incubation. The GDP effect is absent in skeletal muscle mitochondria from UCP3 knockout mice, showing that it is mediated by UCP3. Protection of aconitase by UCP3 in the absence of nucleotides does not require added fatty acids. The purine nucleoside diphosphates and triphosphates cause aconitase inactivation, but the monophosphates and CDP do not, consistent with the known nucleotide specificity of UCP3. The IC50 for GDP is about 100 μM. These findings support the proposal that UCP3 attenuates endogenous radical production by the mitochondrial electron transport chain at high protonmotive force.  相似文献   

15.
Superoxide activates nucleotide-sensitive mitochondrial proton transport through the uncoupling proteins UCP1, UCP2, and UCP3 (Echtay, K. S., et al. (2002) Nature 415, 1482-1486). Two possible mechanisms were proposed: direct activation of the UCP proton transport mechanism by superoxide or its products and a cycle of hydroperoxyl radical entry coupled to UCP-catalyzed superoxide anion export. Here we provide evidence for the first mechanism and show that superoxide activates UCP2 in rat kidney mitochondria from the matrix side of the mitochondrial inner membrane: (i) Exogenous superoxide inhibited matrix aconitase, showing that external superoxide entered the matrix. (ii) Superoxide-induced uncoupling was abolished by low concentrations of the mitochondrially targeted antioxidants 10-(6'-ubiquinonyl)decyltriphenylphosphonium (mitoQ) or 2-[2-(triphenylphosphonio)ethyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol bromide (mitoVit E), which are ubiquinone (Q) or tocopherol derivatives targeted to the matrix by covalent attachment to triphenylphosphonium cation. However, superoxide-induced uncoupling was not affected by similar concentrations of the nontargeted antioxidants Q(o), Q(1), decylubiquinone, vitamin E, or 6-hydroxy-2,5,7,8-tetramethylchroman 2-carboxylic acid (TROLOX) or of the mitochondrially targeted but redox-inactive analogs decyltriphenylphosphonium or 4-chlorobutyltriphenylphosphonium. Thus matrix superoxide appears to be necessary for activation of UCP2 by exogenous superoxide. (iii) When the reduced to oxidized ratio of mitoQ accumulated by mitochondria was increased by inhibiting cytochrome oxidase, it induced nucleotide-sensitive uncoupling that was not inhibited by external superoxide dismutase. Under these conditions quinols are known to produce superoxide, and because mitoQ is localized within the mitochondrial matrix this suggests that production of superoxide in the matrix was sufficient to activate UCP2. Furthermore, the superoxide did not need to be exported or to cycle across the inner membrane to cause uncoupling. We conclude that superoxide (or its products) exerts its uncoupling effect by activating the proton transport mechanism of uncoupling proteins at the matrix side of the mitochondrial inner membrane.  相似文献   

16.
Across a range of vertebrate species, it is known that there is a negative association between maximum lifespan and mitochondrial hydrogen peroxide production. In this report, we investigate the underlying biochemical basis of the low hydrogen peroxide production rate of heart mitochondria from a long-lived species (pigeon) compared with a short-lived species with similar body mass (rat). The difference in hydrogen peroxide efflux rate was not explained by differences in either superoxide dismutase activity or hydrogen peroxide removal capacity. During succinate oxidation, the difference in hydrogen peroxide production rate between the species was localized to the ΔpH-sensitive superoxide producing site within complex I. Mitochondrial ΔpH was significantly lower in pigeon mitochondria compared with rat, but this difference in ΔpH was not great enough to explain the lower hydrogen peroxide production rate. As judged by mitochondrial flavin mononucleotide content and blue native polyacrylamide gel electrophoresis, pigeon mitochondria contained less complex I than rat mitochondria. Recalculation revealed that the rates of hydrogen peroxide production per molecule of complex I were the same in rat and pigeon. We conclude that mitochondria from the long-lived pigeon display low rates of hydrogen peroxide production because they have low levels of complex I.  相似文献   

17.
To investigate the role mitochondrial membrane lipids play in the actions of CR (calorie restriction), C57BL/6 mice were assigned to four groups (control and three 40% CR groups) and the CR groups were fed diets containing soya bean oil (also in the control diet), fish oil or lard. The fatty acid composition of the major mitochondrial phospholipid classes, proton leak and H2O2 production were measured in liver mitochondria following 1 month of CR. The results indicate that mitochondrial phospholipid fatty acids reflect the PUFA (polyunsaturated fatty acid) profile of the dietary lipid sources. CR significantly decreased the capacity of ROS (reactive oxygen species) production by Complex III but did not markedly alter proton leak and ETC (electron transport chain) enzyme activities. Within the CR regimens, the CR-fish group had decreased ROS production by both Complexes I and III, and increased proton leak when compared with the other CR groups. The CR-lard group showed the lowest proton leak compared with the other CR groups. The ETC enzyme activity measurements in the CR regimens showed that Complex I activity was decreased in both the CR-fish and CR-lard groups. Moreover, the CR-fish group also had lower Complex II activity compared with the other CR groups. These results indicate that dietary lipid composition does influence liver mitochondrial phospholipid composition, ROS production, proton leak and ETC enzyme activities in CR animals.  相似文献   

18.
We recently showed that two photoproducts of merocyanine 540, C2 and C5, triggered cytochrome C release; however, C5 was inefficient in inducing caspase activity and apoptosis in leukemia cells, unlike C2. Here we show that HL60 cells acidified upon exposure to C2 but not C5. The intracellular drop in pH and caspase activation were dependent upon hydrogen peroxide production, and were inhibited by scavengers of hydrogen peroxide. On the contrary, caspase inhibitors did not block hydrogen peroxide production. In turn, increased intracellular hydrogen peroxide concentration was downstream of superoxide anion produced within 2 h of exposure to C2. Inhibitor of NADPH oxidase diphenyleneiodonium neither inhibited superoxide production nor caspase activation triggered by C2. However, exposure of purified mitochondria to C2 resulted in significantly increased superoxide production. Furthermore, cytochrome C release from isolated mitochondria induced by C2 was completely inhibited in the presence of scavengers of hydrogen peroxide. Contrarily, scavenging hydrogen peroxide had no effect on the cyclosporin A-sensitive mitochondrial permeability transition induced by C5. Our data suggest a scenario where drug-induced hydrogen peroxide production induces intracellular acidification and release of cytochrome C, independent of the inner membrane pore, thereby creating an intracellular environment permissive for caspase activation.  相似文献   

19.
Antimycin-inhibited bovine heart submitochondrial particles generate O2- and H2O2 with succinate as electron donor. H2O2 generation involves the action of the mitochondrial superoxide dismutase, in accordance with the McCord & Fridovich [(1969) j. biol. Chem. 244, 6049-6055] reaction mechanism. Removal of ubiquinone by acetone treatment decreases the ability of mitochondrial preparations to generate O2- and H2O2, whereas supplementation of the depleted membranes with ubiquinone enhances the peroxide-generating activity in the reconstituted membranes. Addition of superoxide dismutase to ubiquinone-reconstituted membranes is essential in order to obtain maximal rates of H2O2 generation since the acetone treatment of the membranes apparently inactivates (or removes) the mitochondrial superoxide dismutase. Parallel measurements of H2O2 production, succinate dehydrogenase and succinate-cytochrome c reductase activities show that peroxide generation by ubiquinone-supplemented membranes is a monotonous function of the reducible ubiquinone content, whereas the other two measured activities reach saturation at relatively low concentrations of reducible quinone. Alkaline treatment of submitochondrial particles causes a significant decrease in succinate dehydrogenase activity and succinate-dependent H2O2 production, which contrasts with the increase of peroxide production by the same particles with NADH as electron donor. Solubilized succinate dehydrogenase generates H2O2 at a much lower rate than the parent submitochondrial particles. It is postulated that ubisemiquinone (and ubiquinol) are chiefly responsible for the succinate-dependent peroxide production by the mitochondrial inner membrane.  相似文献   

20.
Schild L  Reiser G 《The FEBS journal》2005,272(14):3593-3601
From in vivo models of stroke it is known that ischemia/reperfusion induces oxidative stress that is accompanied by deterioration of brain mitochondria. Previously, we reported that the increase in Ca2+ induces functional breakdown and morphological disintegration in brain mitochondria subjected to hypoxia/reoxygenation (H/R). Protection by ADP indicated the involvement of the mitochondrial permeability transition pore in the mechanism of membrane permeabilization. Until now it has been unclear how reactive oxygen species (ROS) contribute to this process. We now report that brain mitochondria which had been subjected to H/R in the presence of low micromolar Ca2+ display low state 3 respiration (20% of control), loss of cytochrome c, and reduced glutathione levels (75% of control). During reoxygenation, significant mitochondrial generation of hydrogen peroxide (H2O2) was detected. The addition of the membrane permeant superoxide anion scavenger TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) suppressed the production of H2O2 by brain mitochondria metabolizing glutamate plus malate by 80% under normoxic conditions. TEMPOL partially protected brain mitochondria exposed to H/R and low micromolar Ca2+ from decrease in state 3 respiration (from 25% of control to 60% of control with TEMPOL) and permeabilization of the inner membrane. Membrane permeabilization was obvious, because state 3 respiration could be stimulated by extramitochondrial NADH. Our data suggest that ROS and Ca2+ synergistically induce permeabilization of the inner membrane of brain mitochondria exposed to H/R. However, permeabilization can only partially be prevented by suppressing mitochondrial generation of ROS. We conclude that transient deprivation of oxygen and glucose during temporary ischemia coupled with elevation in cytosolic Ca2+ concentration triggers ROS generation and mitochondrial permeabilization, resulting in neural cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号