首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the cell kinetics on the actively growing periosteal surface of the femur of rabbits aged 2 weeks has been continued. A single injection of tritiated thymidine was given and the rabbits killed from 1 hour to 4 days after injection. The grain count spectra of the different cell types, pre-osteoblast, osteoblast, and osteocyte, have been compared at different times after injection. The results showed evidence for the uptake of thymidine in nuclei which is not associated with cell division. A small percentage of osteoblasts was initially labeled at 1 hour and there was evidence that the majority of these had not divided by 3 or 4 days after injection. Some thymidine-labeled cells had also become osteocytes without division. Furthermore, it appeared that a considerable fraction of the initially labeled pre-osteoblasts did not divide. The S period for the pre-osteoblasts and osteoblasts was measured using a double-labeled thymidine technique.  相似文献   

2.
Osteocytes are thought to orchestrate bone remodeling, but it is unclear exactly how osteocytes influence neighboring bone cells. Here, we tested whether osteocytes, osteoblasts, and periosteal fibroblasts subjected to pulsating fluid flow (PFF) produce soluble factors that modulate the proliferation and differentiation of cultured osteoblasts and periosteal fibroblasts. We found that osteocyte PFF conditioned medium (CM) inhibited bone cell proliferation, and osteocytes produced the strongest inhibition of proliferation compared to osteoblasts and periosteal fibroblasts. The nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) attenuated the inhibitory effects of osteocyte PFF CM, suggesting that a change in NO release is at least partially responsible for the inhibitory effects of osteocyte PFF CM. Furthermore, osteocyte PFF CM stimulated osteoblast differentiation measured as increased alkaline phosphatase activity, and l-NAME decreased the stimulatory effects of osteocyte PFF CM on osteoblast differentiation. We conclude that osteocytes subjected to PFF inhibit proliferation but stimulate differentiation of osteoblasts in vitro via soluble factors and that the release of these soluble factors was at least partially dependent on the activation of a NO pathway in osteocytes in response to PFF. Thus, the osteocyte appears to be more responsive to PFF than the osteoblast or periosteal fibroblast with respect to the production of soluble signaling molecules affecting osteoblast proliferation and differentiation.  相似文献   

3.
The population of periodontal ligament (PDL) fibroblasts examined in this study may include osteogenic progenitor cells. PDL fibroblast and osteoblast kinetics in the periodontal ligament of the rat were measured following orthodontic stimulation of bone formation. Both single and multiple injections of tritiated thymidine (3H-TdR) were used. In single injection experiments, the peak percentage of PDL fibroblasts labeled with 3H-TdR is 15% at 22 hr post-stimulation. In multiple injection experiments, the total percentage of fibroblasts in the PDL which respond by synthesizing DNA is 50%. 3H-TdR-labeled osteoblasts appear at the same rate as, but with a time delay after, the labeled fibroblasts. Following stimulation, the most likely source of osteoblasts at the bbone forming site is not only fibroblasts which make DNA, divide, then differentiate, but also fibroblasts which either are differentiated to osteoblasts without DNA synthesis and cell division, or are released from G2 block by the orthodontic stimulation.  相似文献   

4.
Autoradiographic studies were carried out on regenerating muscles of adult chickens. Three different muscles of hens were injured, and tritiated thymidine (1 microCi/g) was injected at various times after injury to label replicating muscle precursors. Detailed comparisons of grain counts over premitotic nuclei in samples removed one hour after injection of tritiated thymidine, and of postmitotic myotube nuclei in samples removed 10 days after injury (when labeled precursors had fused to form myotubes), revealed how many times some labeled precursors had divided before fusing into myotubes. DNA synthesis in muscle precursors was initiated 30 h after injury. Grain counts of myotube nuclei indicated that many muscle precursors labeled at the onset of myogenic cell proliferation had divided only once, or twice, before fusing into myotubes. The relationship of these in vivo results to the cell lineage model of myogenesis is discussed.  相似文献   

5.
Autoradiographic studies were carried out on regenerating muscles of adult chickens. Three different muscles of hens were injured, and tritiated thymidine (1 μCi/g) was injected at various times after injury to label replicating muscle precursors. Detailed comparisons of grain counts over premitotic nuclei in samples removed one hour after injection of tritiated thymidine, and of postmitotic myotube nuclei in samples removed 10 days after injury (when labeled precursors had fused to form myotubes), revealed how many times some labeled precursors had divided before fusing into myotubes. DNA synthesis in muscle precursors was initiated 30 h after injury. Grain counts of myotube nuclei indicated that many muscle precursors labeled at the onset of myogenic cell proliferation had divided only once, or twice, before fusing into myotubes. The relationship of these in vivo results to the cell lineage model of myogenesis is discussed.  相似文献   

6.
The population of periodontal ligament (PDL) fibroblasts examined in this study may include osteogenic progenitor cells. PDL fibroblast and osteoblast kinetics in the periodontal ligament of the rat were measured following orthodontic stimulation of bone formation. Both single and multiple injections of tritiated thymidine (3H-TdR) were used. In single injection experiments, the peak percentage of PDL fibroblasts labeled with 3H-TdR is 15% at 22 hr post-stimulation. In multiple injection experiments, the total percentage of fibroblasts in the PDL which respond by synthesizing DNA is 50%. 3H-TdR-Iabeled osteoblasts appear at the same rate as, but with a time delay after, the labeled fibroblasts. Following stimulation, the most likely source of osteoblasts at the bone-forming site is not only fibroblasts which make DNA, divide, then differentiate, but also fibroblasts which either are differentiated to osteoblasts without DNA synthesis and cell division, or are released from G2 block by the orthodontic stimulation.  相似文献   

7.
The proliferative response of mouse skin to damage caused by X-irradiation has been tested by giving repeated injections of tritiated thymidine and scoring the percentage of labelled cells in high resolution autoradiography. Four, nine and fourteen daily fractions of 300 rads of X-rays were used and labelling commenced 4 days after the last fraction. The epidermis of the upper surface and the sole of the foot were scored separately and were compared with the skin of unirradiated feet. In unirradiated skin the proliferation rate of the basal layer cells is more rapid on the sole than on the upper surface. The cell cycle times deduced from continuous labelling curves were 81 hr and 111 hr respectively and the growth fractions were 97% and85%. After irradiation with small daily doses the homeostatic response to cell killing was slow. More rapid proliferation occurred after nine fractions in the sole, but was not apparent in the skin of the upper surface until fourteen fractions had been given. After fourteen fractions the cell cycle time was about 24 hr on both surfaces and the growth fraction was about 90%. The initial labelling index after a single thymidine injection was a poor measure of proliferation rate. The delay in the time of onset of faster proliferation is similar, both qualitatively and quantitatively, to that measured previously from the additional dose increments needed if large doses were given at different times after the multifraction treatments (Denekamp, 1973).  相似文献   

8.
The proliferative response of mouse skin to damage caused by X-irradiation has been tested by giving repeated injections of tritiated thymidine and scoring the percentage of labelled cells in high resolution autoradiographs. Four, nine and fourteen daily fractions of 300 rads of X-rays were used and labelling commenced 4 days after the last fraction. The epidermis of the upper surface and the sole of the foot were scored separately and were compared with the skin of unirradiated feet. In unirradiated skin the proliferation rate of the basal layer cells is more rapid on the sole than on the upper surface. The cell cycle times deduced from continuous labelling curves were 81 hr and 111 hr respectively and the growth fractions were 97% and 85%. After irradiation with small daily doses the homeostatic response to cell killing was slow. More rapid proliferation occurred after nine fractions in the sole, but was not apparent in the skin of the upper surface until fourteen fractions had been given. After fourteen fractions the cell cycle time was about 24 hr on both surfaces and the growth fraction was about 90%. The initial labelling index after a single thymidine injection was a poor measure of proliferation rate. The delay in the time of onset of faster proliferation is similar, both qualitatively and quantitatively, to that measured previously from the additional dose increments needed if large doses were given at different times after the multifraction treatments (Denekamp, 1973).  相似文献   

9.
A method has been developed for the measurement of DNA synthesis in vivo using the incorporation of multilabeled, non-radioactive thymidine. Simultaneous intraperitoneal injection of hexalabeled thymidine and tritiated thymidine into a normal adult rat resulted in the incorporation of both labeled nucleosides into the DNA of cells undergoing replication. The DNA of several tissues and organs was analysed, including liver, thymus, spleen, bone marrow, and small intestine. Following extraction with hot trichloroacetic acid, acid hydrolysis, and thin-layer chromatography of the hydrolysates, the isotopic compositions of the thymine products were determined by field ionization mass spectrometry and by scintillation counting. The relative incorporation of radioactive and stable isotope-labeled thymidine was similar in all tissues, and corresponded to the ratio of the two labeled nucleosides in the injected material. These results indicate the feasibility of utilizing thymidine multilabeled with stable isotopes for measurement of cellular proliferation rates in conjunction with cancer therapy.  相似文献   

10.
The clinically beneficial effect of low frequency pulsed electromagnetic fields (ELF‐PEMF) on bone healing has been described, but the exact mechanism of action remains unclear. A recent study suggests that there is a direct autocrine mitogenic effect of ELF‐PEMF on angiogenesis. The hypothesis of this study is that ELF‐PEMF also has an indirect effect on angiogenesis by manipulation of vascular endothelial growth factor (VEGF)‐A‐based paracrine intercellular communication with neighboring osteoblasts. Conditioned media experiments measured fetal rat calvarial cell (FRC) and human umbilical vein endothelial cell (HUVEC) proliferation using tritiated thymidine uptake. We demonstrate that ELF‐PEMF (15 Hz, 1.8 mT, for 8 h) has an indirect effect on the proliferation rate of both endothelial cells and osteoblasts in vitro by altering paracrine mediators. Conditioned media from osteoblast cells stimulated with ELF‐PEMF increased endothelial proliferation 54‐fold, whereas media from endothelial cells stimulated with ELF‐PEMF did not affect osteoblast proliferation. We examined the role of the pro‐angiogenic mediator VEGF‐A in the mitogenic effect of ELF‐PEMF‐stimulated osteoblast media on endothelial cells. The production of VEGF‐A by FRC as measured by ELISA was not changed by exposure to PEMF, and blocking experiments demonstrated that the ELF‐PEMF‐induced osteoblast‐derived endothelial mitogen observed in these studies was not VEGF‐A, but some other soluble angiogenic mediator. Bioelectromagnetics 30:189–197, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
12.
THE CELL GENERATION CYCLE OF THE ELEVEN-DAY MOUSE EMBRYO   总被引:1,自引:1,他引:0       下载免费PDF全文
The incorporation of tritiated thymidine into the DNA of erythroblasts, primitive ependymal cells, and mesenchymal cells of 11-day mouse embryos was studied by radioautography at different times between 25 minutes and 18 hours after injection intraperitoneally. There was no labeling of mitotic figures until 1 hour after injection. Following this, mitotic figures were labeled for about 5.5 hours in primitive ependymal cells and mesenchymal cells, and for a longer period in erythroblasts. The percentage of the labeled primitive ependymal cells at various times after injection indicate a periodic migration into and out of the mitotic zone. The cell generation cycle of primitive ependymal cells and mesenchymal cells is similar to some kinds of adult cells. The cycle of the erythroblasts is more like that of the cells of aging mice.  相似文献   

13.
Newborn mouse calvaria, cyropreserved at -196 degrees C in serum-free medium containing dimethyl-sulfoxide, were compared to unpreserved explants for bone cell viability by [3H]thymidine uptake. Other explants were studied using autoradiography to compare the histological appearance of the cryopreserved and control unpreserved explant sites of cellular localization of [3H]thymidine. After short-term cryopreservation, calvarial bone cells, including less differentiated osteoprogenitor cells, survived as indicated by their incorporation of the DNA precursor. With culture continuing for up to 24 hr after thawing and in the continuous presence of [3H]thymidine, additional labeled thymidine was incorporated, indicating that the proliferative ability of explant cells persists after cryopreservation. Cryopreserved bone explants did not, however, incorporate the same amount of labeled thymidine as did controls at each time point studied. These events, as measured quantitatively and observed by autoradiography of the tissue, indicate that newborn calvarial bone cell proliferation in vitro continues after cryopreservation. The large surface:mass ratio of the tissue and its proportionate volume of calcified matrix apparently permits it to behave as an isolated cell population with regard to the diffusion of the cryoprotectant and thermal conductivity, thus permitting the retention of explant viability.  相似文献   

14.
 Cultures of isolated osteocytes may offer an appropriate system to study osteocyte function, since isolated osteocytes in culture behave very much like osteocytes in vivo. In this paper we studied the capacity of osteocytes to change their surrounding extracellular matrix by production of matrix proteins. With an immunocytochemical method we determined the presence of collagen type I, fibronectin, osteocalcin, osteopontin and osteonectin in cultures of isolated chicken osteocytes, osteoblasts and periosteal fibroblasts. In osteoblast and periosteal fibroblast cultures, large extracellular networks of collagen type I and fibronectin were formed, but in osteocyte populations, extracellular threads of collagen or fibronectin were only rarely found. The percentage of cells positive for osteocalcin, osteonectin and osteopontin in the Golgi apparatus, on the other hand, was highest in the osteocyte population. These results show that osteocytes have the ability to alter the composition of their surrounding extracellular matrix by producing matrix proteins. We suggest this property is of importance for the regulation of the calcification of the bone matrix immediately surrounding the cells. More importantly, as osteocytes depend for their role as mechanosensor cells on their interaction with matrix proteins, the adaptation of the surrounding matrix offers a way to regulate their response to mechanical loading. Accepted: 9 July 1996  相似文献   

15.
We investigated nucleotide-labeling patterns during ongoing hair cell regeneration in the avian vestibular epithelium and during drug-induced regeneration in the avian auditory epithelium. For utricle experiments, post-hatch chicks received an injection of bromodeoxyuridine (BrdU) and were allowed to survive from 2 hours to 110 days after the injection. Utricles were fixed and immunoreacted to detect BrdU. The number of BrdU-labeled nuclei in the hair cell and support cell layers of the utricular sensory epithelium changes significantly between 2 hours and 110 days post-BrdU. At 2 hours, most labeled cells are isolated, while by 5–10 days, the majority of labeled cells are organized in pairs that are most frequently composed of a hair cell and a support cell. Pairs of labeled cells are seen as late as 110 days. Clusters of more than 3 labeled cells are uncommon at all time-points. The total number of labeled cells increases approximately 1.5-fold between 5 and 60 days post-BrdU. This increase is due primarily to a rise in the number of labeled support cells, and it is likely that it represents additional rounds of division by a subset of cells that were labeled at the time of the BrdU injection. There is a significant decrease in labeled nuclei in the hair cell layer between 60 and 110 days post-BrdU, suggesting that hair cells die during this period. To investigate support cell recycling in the drug-damaged auditory epithelium, we examined nucleotide double labeling after separate injections of BrdU and tritiated thymidine. A small number of support cells that incorporate BrdU administered at 3 days post-gentamicin treatment also label with tritiated thymidine administered between 17 and 38 hours later. We conclude that a small population of support cells recycles during regeneration in both the normal utricle and the drug-damaged basilar papilla.  相似文献   

16.
The morphological changes undergone by the osteoblast at the ultrastructural level, during its differentiation into osteocyte, were studied in the primary parallel-fibred bone of the newborn rabbit by means of incomplete three-dimensional reconstruction from partially serial-sectioned preosteocytes. The findings obtained suggest that the formation of osteocyte cytoplasmic processes is an asynchronous and asymmetrical phenomenon that seems to precede the mineralization of the organic matrix and to give rise to an asymmetrical mature osteocyte. The functions of cytoplasmic processes as regards bone formation, cell nutrition and osteoblast modulation are discussed. The mechanism by which the osteoblast 'enters' the bone matrix is hypothesized.  相似文献   

17.
We have examined the induction and repair of gamma-ray-induced DNA strand breaks in different subpopulations of cells in mouse jejunal epithelium and bone marrow using a modification of the alkaline elution methodology whereby different populations of cells are selectively labeled with radioactive DNA precursors. Mice were labeled by intraperitoneal injection with between 0.5 and 2.0 mu Ci/g of [3H]thymidine at various times prior to irradiation with 10 Gy of gamma rays. In the studies with jejunal epithelium, the timing of the injection of the radiolabel relative to the irradiation was varied between 6 and 72 h, depending on the cell population of interest. The DNA damage and repair characteristics representative of both the total cell population and the radiolabeled fraction of these cells were then measured. Little difference was noted in the amount of initial damage induced in these different populations of cells. However, for both the jejunum and bone marrow, cells that incorporated the radiolabel within 6 h after injection (i.e., rapidly proliferating cells) repaired their strand breaks more rapidly than did the remainder of the population. In the case of jejunum, the repair capacity of the radiolabeled cell population progressively diminished as the cells matured and differentiated so that cells that contained the radiolabel 72 h after injection (i.e., mature villus cells) actually repaired their strand breaks more slowly than did the bulk cells.  相似文献   

18.
OBJECTIVE: To assess whether DNA image cytometry can be used as an alternative method to tritiated thymidine uptake quantification in osteoblast proliferation assays. STUD DESIGN: Proliferation of normal human osteoblasts incubated with normal human serum at 0%, 2.5%, 5%, 10%, 20% and 40% was quantified by tritiated thymidine uptake quantification and DNA image cytometry. RESULTS: Tritiated thymidine uptake quantification showed that normal human serum stimulated the proliferation of normal human osteoblasts and that the degree of stimulation was directly related to the concentration of serum in the culture medium. Similar results were obtained when the DNA image cytometry assay was used. A highly significant linear relationship between the ranks of both methods was found (Spearman's r = 1.00, P = .0253). CONCLUSION: DNA image cytometry may be a valuable alternative when the use of radioactive material is not desired and/or subsequent morphologic or immunocytochemical characterization of cells under study is required.  相似文献   

19.
A water-soluble monocytosis-producing activity (MPA) extracted from Listeria monocytogenes was found to stimulate proliferation of promonocytes in vivo. Mice were pulse-labelled for 2 h with tritiated thymidine ([3H]TdR) at various times after intraperitoneal injection of MPA. Autoradiography of bone marrow cells revealed an increased labelling index of promonocytes of MPA-treated mice which was maximum 8 h after the MPA injection. Mice labelled with [3H]TdR 8 h after MPA injection developed a monocytosis at the expected time (peak at 48 h) and the blood monocytes were found to be highly labelled. Both the generation time of monocyte precursors and the halftime of blood monocytes were found to be shorter than the corresponding values in control mice.  相似文献   

20.
The in situ localization of osteoblast/osteocyte factor 45 (OF45) mRNA during bone formation has been examined in the rat mandible from embryonic day 14 (E14) up to postnatal 90-day-old Wistar rats. Gene expression was also examined during cell culture not only in primary rat osteoblast-like cells but also in two clonal rat osteoblastic cell lines with different stages of differentiation, ROB-C26 (C26) and ROB-C20 (C20) using Northern blot analysis. The C26 cell is a potential osteoblast precursor cell line, whereas the C20 cell is a more differentiated osteoblastic cell line. At E15 osteoblast precursor cells differentiated into a group of osteoblasts, some of which expressed the majority of non-collagenous proteins, whereas no expression of OF45 was observed in these cells. Intercellular matrices surrounded by osteoblasts were mineralized at E16. Subsequently, the number of osteoblasts differentiated from osteoblast precursor cells was increased in association with bone formation. At E17, the first expression of OF45 mRNA was observed only in a minority of mature osteoblasts attached to the bone matrix, but not in the rest of less mature osteoblasts. At E20, concomitant with the appearance of osteocytes, OF45 mRNA expression was observed not only in more differentiated osteoblasts that were encapsulated partly by bone matrix but also in osteocytes. Subsequently, osteocytes increased progressively in number and sustained OF45 mRNA expression in up to 90-day-old rats. Northern blot analysis of the cultured cells with or without dexamethasone treatment revealed that the gene expression of OF45 correlated well with the increased cell differentiation. These results indicate that OF45 mRNA is transiently expressed by mature osteoblasts and subsequently expressed by osteocytes throughout ossification in the skeleton and this protein represents an important marker of the osteocyte phenotype and most likely participates in regulating osteocyte function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号