首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RUNX1/AML1 gene is the most frequent target for chromosomal translocation, and often identified as a site for reciprocal rearrangement of chromosomes 8 and 21 in patients with acute myelogenous leukemia. Virtually all chromosome translocations in leukemia show no consistent homologous sequences at the breakpoint regions. However, specific chromatin elements (DNase I and topoisomerase II cleavage) have been found at the breakpoints of some genes suggesting that structural motifs are determinant for the double strand DNA-breaks. We analyzed the chromatin organization at intron 5 of the RUNX1 gene where all the sequenced breakpoints involved in t(8;21) have been mapped. Using chromatin immunoprecipitation assays we show that chromatin organization at intron 5 of the RUNX1 gene is different in HL-60 and HeLa cells. Two distinct features mark the intron 5 in cells expressing RUNX1: a complete lack or significantly reduced levels of Histone H1 and enrichment of hyperacetylated histone H3. Strikingly, induction of DNA damage resulted in formation of t(8;21) in HL-60 but not in HeLa cells. Taken together, our results suggest that H1 depletion and/or histone H3 hyperacetylation may have a linkage with an increase susceptibility of specific chromosomal regions to undergo translocations.  相似文献   

2.
3.
A novel translocation t(9;21)(q13;q22) associated with trisomy 4 has been detected in a patient with acute myelomonocytic leukemia (AML,M4) in relapse. The chromosomal translocation results in rearrangement of the RUNX1 gene at 21q22. The DNA sequence rearranged on chromosome 9 remains unidentified. The diversity of the partners involved in translocations implicating RUNX1 suggests that the functional consequences of the abnormality are more due to the truncation of RUNX1 than to the identity of its partner in the rearrangement.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
There are over 20 females with Duchenne or Becker muscular dystrophy (DMD or BMD) who have X-autosome translocations that break the X chromosome within band Xp21. Several of these translocations have been mapped with genomic probes to regions throughout the large (approximately 2000 kb) DMD gene. In this report, a cDNA clone from the 5' end of the gene was used to further map the breakpoints in four X-autosome translocations. A t(X;21) translocation in a patient with BMD and a t(X;1) translocation in a patient with DMD were found to break within a large 110-kb intron between exons 7 and 8. Two other DMD translocations, t(X;5) and t(X;11), were found to break between the first and the second exon of the gene within a presumably large intron (greater than 100 kb). These results demonstrate that all four translocations have disrupted the DMD gene and make it possible to clone and sequence the breakpoints. This will in turn determine whether these translocations occur by chance in these large introns or whether there are sequences that predispose to translocations.  相似文献   

15.
16.
G Colwell  B Li  D Forrest  R Brackenbury 《Genomics》1992,14(4):875-882
Genomic clones containing 5'-flanking sequences, the first exon, and the entire first intron from the chicken N-CAM gene were characterized by restriction mapping and DNA sequencing. A > 600-bp segment that includes the first exon is very G + C-rich and contains a large proportion of CpG dinucleotides, suggesting that it represents a CpG island. SP-1 and AP-1 consensus elements are present, but no TATA- or CCAAT-like elements were found within 300 bp upstream of the first exon. Comparison of the chicken promoter region sequence with similar regions of the human, rat, and mouse N-CAM genes revealed that some potential regulatory elements including a "purine box" seen in mouse and rat N-CAM genes, one of two homeodomain binding regions seen in mammalian N-CAM genes, and several potential SP-1 sites are not conserved within this region. In contrast, high CpG content, a homeodomain binding sequence, an SP-1 element, an octomer element, and an AP-1 element are conserved in all four genes. The first intron of the chicken gene is 38 kb, substantially smaller than the corresponding intron from mammalian N-CAM genes. Together with previous studies, this work completes the cloning of the chicken N-CAM gene, which contains at least 26 exons distributed over 85 kb.  相似文献   

17.
Aberrant methylation of CpG-dense islands in the promoter regions of genes is an acquired epigenetic alteration associated with the silencing of tumor suppressor genes in human cancers. In a screen for endogenous targets of methylation-mediated gene silencing, we identified a novel CpG island-associated gene, TMS1, which is aberrantly methylated and silenced in response to the ectopic expression of DNA methyltransferase-1. TMS1 functions in the regulation of apoptosis and is frequently methylated and silenced in human breast cancers. In this study, we characterized the methylation pattern and chromatin architecture of the TMS1 locus in normal fibroblasts and determined the changes associated with its progressive methylation. In normal fibroblasts expressing TMS1, the CpG island is defined by an unmethylated domain that is separated from densely methylated flanking DNA by distinct 5' and 3' boundaries. Analysis of the nucleoprotein architecture of the locus in intact nuclei revealed three DNase I-hypersensitive sites that map within the CpG island. Strikingly, two of these sites coincided with the 5'- and 3'-methylation boundaries. Methylation of the TMS1 CpG island was accompanied by loss of hypersensitive site formation, hypoacetylation of histones H3 and H4, and gene silencing. This altered chromatin structure was confined to the CpG island and occurred without significant changes in methylation, histone acetylation, or hypersensitive site formation at a fourth DNase I-hypersensitive site 2 kb downstream of the TMS1 CpG island. The data indicate that there are sites of protein binding and/or structural transitions that define the boundaries of the unmethylated CpG island in normal cells and that aberrant methylation overcomes these boundaries to direct a local change in chromatin structure, resulting in gene silencing.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号