首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bilirubin dehydrogenase, a membrane-bound enzyme that catalyzes the one-step oxidation of ditaurobilirubin and bilirubin to ditaurobiliverdin and biliverdin, respectively, in the presence of an electron acceptor, was found in Aspergillus ochraceus IB-3, and purified from the membrane fraction through solubilization by Triton X-100. Phenazine and quinone derivatives acted as electron acceptors. Accumulation of ditaurobiliverdin and biliverdin by enzyme catalysis increased the absorbance at 660 nm, which is far from the range of wavelengths affected by serum ingredients. The enzyme selectively oxidized ditaurobilirubin at low pH, so changes in the reaction pH enable the enzyme to discriminate between the bilirubin fractions ditaurobilirubin (an example of conjugated bilirubin) and bilirubin (an example of unconjugated bilirubin). Using the enzyme, 2 to 80 μM of ditaurobilirubin were measured accurately by monitoring the changes in absorbance at 660 nm.  相似文献   

2.
从中国土样中筛选到一株能产生胆红素氧化酶的微生物(Myrothecium Verrucaria)J-1,培养后,分离纯化,最后经QAE—Sephadex A50柱层析,得到胆红素氧化酶比活为207.65 U/A 280nm,总产率为22.3%。纯酶紫外吸收峰为278 nm,凝胶电泳为单一色带。分子量估计为52000。它能迅速、特异地氧化胆红素为胆绿素,并进一步氧化成目前还不清楚的紫色化合物。最佳作用pH为7.0,最佳作用温度为40℃。  相似文献   

3.
We describe a rapid, reverse-phase HPLC procedure for separating and quantifying tetrapyrroles of biological interest. This procedure uses a 5-micron C18 column and the mobile phase is ammonium phosphate (pH 3.5) with a methanol gradient that is increased from 61 to 100%. Detection is by absorbance at 405 nm or by fluorescence. Porphyrins, heme, and the heme breakdown products, biliverdin and bilirubin, can be separated from a single injection in 25 min. Injections can be made every 40 min. Limits of detection are about 0.1 pmol for porphyrins, 5 pmol for heme, and 10 pmol for biliverdin and bilirubin. We present examples of the use of the system for separating tetrapyrroles formed by primary cultures of chick embryo hepatocytes and homogenates of rat liver.  相似文献   

4.
纯牛脾胆绿素还原酶是单一蛋白质,分子量约34 000,等电点约6.2。该酶对胆绿素具有专一性,在还原胆绿素为胆红素中,以还原胆绿素Ⅸ_α最快,Ⅸ_β、Ⅸ_γ和Ⅸ_δ皆很慢。于还原反应中,此酸可以NADH为电子和氢供体,NADPH亦然。然而,NADH依赖性酸与NADPH依赖性酶动力学性质不同:与NADH反应的最适pH7.0,而与HADPH反应时为8.5;两者活性均为过量的胆绿素所抑制,不过,NADPH依赖性酶更敏感。  相似文献   

5.
Lipocalin-type prostaglandin D synthase is a major protein of the cerebrospinal fluid and was originally known as beta-trace. We investigated the binding ability of prostaglandin D synthase toward bile pigments, thyroid hormones, steroid hormones, and fatty acids in this present study. We found that the recombinant enzyme binds bile pigments and thyroid hormones, resulting in quenching of the intrinsic tryptophan fluorescence, the appearance of induced circular dichroism of the lipophilic ligands, and a red shift of the absorption spectra of bilirubin and biliverdin. The binding of prostaglandin D synthase to lipophilic ligands was also demonstrated by the resonant mirror technique and surface plasmon resonance detection. The dissociation constants were calculated to be 33 nM, 37 nM, 660 nM, 820 nM, and 2.08 microM for biliverdin, bilirubin, L-thyroxine, 3,3',5'-triiodo-L-thyronine, and 3,3', 5-triiodo-L-thyronine, respectively. Biliverdin and bilirubin underwent a shift in their absorption peaks from 375 to 380 nm and from 439 to 446 nm, respectively, after binding to prostaglandin D synthase. Bilirubin bound to the enzyme showed a bisignate CD spectrum with a (-) Cotton effect at 422 nm and a (+) Cotton effect at 472 nm, indicating a right-handed chirality. The ligands also inhibited prostaglandin D synthase activity noncompetitively in a concentration-dependent manner, with IC50 values between 3.9 and 10. 9 microM. Epididymal retinoic acid-binding protein and beta-lactoglobulin, two other lipocalin proteins that bind retinoids such as prostaglandin D synthase, did not show any significant interaction with bile pigments or thyroid hormones. These results show that prostaglandin D synthase binds small lipophilic ligands with a specificity distinct from that of other lipocalins.  相似文献   

6.
Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by the perturbed equilibrium method. We have prepared a three-electron-reduced, CO-inhibited form of the enzyme in which cytochrome a and copper A are partially reduced and in an intramolecular redox equilibrium. When these samples were irradiated with a nitrogen laser (0.6-ns, 1.0-mJ pulses) to photodissociate the bound CO, changes in absorbance at 598 and 830 nm were observed which were consistent with a fast electron transfer from cytochrome a to copper A. The absorbance changes at 598 nm gave an apparent rate of 17,000 +/- 2000 s-1 (1 sigma), at pH 7.0 and 25.5 degrees C. These changes were not observed in either the CO mixed-valence or the CO-inhibited fully reduced forms of the enzyme. The rate was fastest at about pH 8.0, falling off toward both lower and higher pHs. There was a small but clear temperature dependence. The process was also observed in the cytochrome c-cytochrome c oxidase high-affinity complex. The electron equilibration measured between cytochrome a and copper A is far faster than any rate measured or inferred previously for this process.  相似文献   

7.
Visible light irradiation of 18 microM bilirubin ditaurate (BR-DT) at pH 7.0 for 30 min showed a 10% decrease in absorbance at 445 nm. When the reaction was carried out in the presence of a trace amount of uroporphyrin (UP), the spectrum of BR-DT disappeared without a concomitant formation of biliverdin. Photooxidation products were confirmed to be dipyrrole-containing compounds. Photo-bleaching of BR-DT was accelerated by the increasing concentration of UP and was inhibited, when UP was replaced by Cu2+UP. Formation of 2,2,6,6-tetramethylpiperidine N-oxyl through the irradiation of UP was diminished by sodium azide, a potent scavenger of singlet oxygen. The efficiency of singlet oxygen formation through visible light irradiation was in the order UP, coproporphyrin > Cu2+UP. Both bilirubin and BR-DT bound to human serum albumin (HSA) were photooxidized effectively in the presence of UP. The results indicate that irradiation of UP produces singlet oxygen with high efficiency which then rapidly oxidizes free and conjugated bilirubin.  相似文献   

8.
The absorption spectrum of arsenazo III in media containing K+, Mg2+ and Ca2+ is sharply influenced by pH in the range of 7.5--5.0. The effect of pH is particularly pronounced in the wavelength range 532--602 nm due to the large pH dependence of the dissociation constant of Mg-arsenazo III complex. Therefore absorption changes at these wavelengths during muscle contraction cannot be used as reliable indicators of free ionized Ca2+ concentration in the cell. The effect of pH is less pronounced, but still noticeable at the wavelength pairs 575--650 or 660--685 nm. Multiple layers of muscle cells grown on polystyrene coils permit measurement of absorption changes of arsenazo III, introduced into the cells, by equilibration with 0.5 mM arsenazo III under routine culture conditions. The absorbance changes recorded at 660--685 nm are probably related to changes in intracellular free Ca2+ concentration.  相似文献   

9.
Kinetics and mechanism of bilirubin binding to human serum albumin   总被引:3,自引:0,他引:3  
The kinetics of bilirubin binding to human serum albumin at pH 7.40, 4 degrees C, was studied by monitoring changes in bilirubin absorbance. The time course of the absorbance change at 380 nm was complex: at least three kinetic events were detected including the bimolecular association (k1 = 3.8 +/- 2.0 X 10(7) M-1 S-1) and two relaxation steps (52 = 40.2 +/- 9.4 s-1 and k3 = 3.8 +/- 0.5 s-1). The presence of the two slow relaxations was confirmed under pseudo-first order conditions with excess albumin. Curve-fitting procedures allowed the assignment of absorption coefficients to the intermediate species. When the bilirubin-albumin binding kinetics was observed at 420 nm, only the two relaxations were seen; apparently the second order association step was isosbestic at this wavelength. The rate of albumin-bound bilirubin dissociation was measured by mixing the pre-equilibrated human albumin-bilirubin complex with bovine albumin. The rate constant for bilirubin dissociation measured at 485 nm was k-3 = 0.01 s-1 at 4 degrees C. A minimum value of the equilibrium constant for bilirubin binding to human albumin determined from the ratio k1/k-3 is therefore approximately 4 X 10(9) M-1.  相似文献   

10.
M Oliveberg  B G Malmstr?m 《Biochemistry》1992,31(14):3560-3563
The reactions of the fully reduced, three-electron-reduced, and mixed-valence cytochrome oxidase with molecular oxygen have been followed in flow-flash experiments, starting from the CO complexes, at 445 and 830 nm at pH 7.4 and 25 degrees C. With the fully reduced and the three-electron-reduced enzyme, four kinetic phases with rate constants in the range from 1 x 10(5) to 10(3) s-1 can be observed. The initial fast phase is associated with an absorbance increase at 830 nm. This is followed by an absorbance decrease (2.8 x 10(4) s-1), the amplitude of which increases with the degree of reduction of the oxidase. The third phase (6 x 10(3) s-1) displays the largest absorbance change at both wavelengths in the fully reduced enzyme and is not seen in the mixed-valence oxidase at 830 nm; a change with opposite sign but with a similar rate constant is found at 445 nm in this enzyme form. The slowest phase (10(3) s-1) is also largest in the fully reduced oxidase and not seen in the mixed-valence enzyme. It is suggested that O2 initially binds to reduced CuB and is then transferred to cytochrome a3 before electron transfer from cytochrome a/CuA takes place. The fast oxidation of cytochrome a seen with the fully reduced enzyme is suggested not to occur during natural turnover. A reaction cycle for the complete turnover of the enzyme is presented. In this cycle, the oxidase oscillates between electron input and output states of the proton pump, characterized by cytochrome a having a high and a low reduction potential, respectively.  相似文献   

11.
The changes undergone by pure yeast glutathione reductase during redox interconversion have been studied. Both the active and inactive forms of the enzyme had similar molecular masses, suggesting that the inactivation is probably due to intramolecular modification(s). The glutathione reductase and transhydrogenase activities were similarly inactivated by NADPH and reactivated by GSH, while the diaphorase activity remained unaltered during redox interconversion of glutathione reductase. These results suggest that the inactivation site could be located far from the NADPH-binding site, although interfering with transhydrogenase activity, perhaps by conformational changes. The inactivation of glutathione reductase by 0.2 mM NADPH at pH 8 was paralleled by a gradual decrease in the absorbance at 530 nm and a simultaneous increase in the absorbance at 445 nm, while the reactivation promoted by GSH was initially associated with reversal of these spectral changes. The inactive enzyme spectrum retained some absorbance between 500 nm and 700 nm, showing a shoulder at 580-600 nm. Upon treatment of the enzyme with NADPH at pH 6.5 the spectrum remained unchanged, while no redox inactivation was observed under these conditions. It is suggested that the redox inactivation could be associated with the disappearance of the charge-transfer complex between the proximal thiolate and oxidized FAD in the two-electron-reduced enzyme. The inactive enzyme was reactivated by low GSSG concentrations, moderate dithiol concentrations, and high monothiol concentrations. These results and the spectral changes described above support the hypothesis attributing the redox interconversion to formation/disappearance of an erroneous disulfide between one of the half-cystines located at the GSSG-binding site and another cysteine nearby.  相似文献   

12.
The absorption spectrum of arsenazo III in media containing K+, Mg2+ and Ca2+ is sharply influenced by pH in the range of 7.5–5.0. The effect of pH is particularly pronounced in the wavelength range 532–602 nm due to the large pH dependence of the dissociation constant of Mg-arsenazo III complex. Therefore absorption changes at these wavelengths during muscle contraction cannot be used as reliable indicators of free ionized Ca2+ concentration in the cell. The effect of pH is less pronounced, but still noticeable at the wavelength pairs 575–650 or 660–685 nm.Multiple layers of muscle cells grown on polystyrene coils permit measurement of absorption changes of arsenazo III, introduced into the cells, by equilibration with 0.5 nM arsenazo III under routine culture conditions. The absorbance changes recorded at 660–685 nm are probably related to changes in intracellular free Ca2+ concentration.  相似文献   

13.
Ligand-induced ultraviolet difference spectra have been determined for Escherichia coli ornithine transcarbamoylase. The most prominent feature of the spectra is an absorbance difference which resembles a single period of a sine wave spanning the 245-320 nm region with a maximum at approximately 270 nm and a minimum at around 295-300 nm. This broad absorbance difference is typical of a blue-shift 1La band of tryptophan. Superimposed on the broad band in the 275-310 nm region is a series of smaller, narrow peaks resulted from red-shifted 1Lb bands of tryptophan and tyrosine residues. At pH 8.5, only carbamoyl phosphate and its analog phosphonacetamide yield a large ultraviolet difference absorbance (approximately 1800 M-1 cm-1) when bound to the enzyme. The spectra obtained are essentially the same in lineshape to and 80% in intensity of that produced by the bisubstrate analogy, N-(phosphonacetyl)-L-ornithine. In contrast, inorganic phosphate, a product of the reaction, induces small protein absorbance changes (approximately 300 M-1 cm-1) mainly in the 275-310 nm range. When complexed to the free enzyme, L-ornithine yields a marginally discernible ultraviolet difference spectrum in the 275-310 nm region, and its analogs L-norvaline and L-citrulline provide no absorbance change. However, inorganic phosphate in combination with any of the L-amino acids produces a difference spectrum similar to that given by carbamoyl phosphate alone. Collectively, these spectra suggest that carbamoyl phosphate elicits an isomerization required for the formation of the ternary complex and are consistent with the compulsory ordered mechanism of the enzyme at pH 8.5 with carbamoyl phosphate being the first substrate bound. Below pH 8, there is a kinetically discernible amount of random binding, but ordered addition is still the preferred pathway (Wargnies B., Legrain, C., and Stalon, V. (1978) Eur J. Biochem. 89, 203-212). Reflecting this change, the difference absorbance of the enzyme bound with carbamoyl phosphate is also pH dependent. The 1La band in the carbamoyl phosphate difference spectrum diminishes by approximately 20% at low pH. The PALO-induced changes, however, are pH invariant suggesting that full extent of the induced-fit isomerization is always reached in the ternary complex.  相似文献   

14.
Biliverdin reductase (BVR) is a soluble cytoplasmic enzyme that catalyzes the conversion of biliverdin to bilirubin using NADH or NADPH as electron donor. Bilirubin is a significant biological antioxidant, but it is also neurotoxic and the cause of kernicterus. In this study, we have determined the crystal structure of rat BVR at 1.4 A resolution. The structure contains two domains: an N-terminal domain characteristic of a dinucleotide binding fold (Rossmann fold) and a C-terminal domain that is predominantly an antiparallel six-stranded beta-sheet. Based on this structure, we propose modes of binding for NAD(P)H and biliverdin, and a possible mechanism for the enzyme.  相似文献   

15.
Neutral solvent systems were developed to isolate the alpha, beta, gamma, and delta isomers of biliverdin IX dimethyl ester by TLC. The individual free acids of biliverdin IX were obtained by saponification of the corresponding dimethyl esters. The bilirubin IX isomers were prepared by reducing the corresponding biliverdin IX isomers with NaBH3CN. Starting from a pure biliverdin IX dimethyl ester, the corresponding free acid of biliverdin IX or bilirubin IX was available within 3-4 h. Preparation of spectrally pure bile pigment required final TLC on acid-cleaned neutral TLC plates. The absorption spectra of the free acids and dimethyl esters of biliverdin IX in methanol showed a broad band at about 650 nm and a sharp band at about 375 nm. The long-wave-length band was extremely sensitive to the presence of strong acid. A 10-fold molar excess of HCl caused a 35- to 50-nm shift of the absorption maximum to longer wavelengths and near doubling of the maximum absorption. The molar absorption coefficients of biliverdins were identical for each free acid and dimethyl ester pair. In each case, Beer's law was followed in both methanol and acidified methanol. Methanol also proved to be a suitable solvent for spectroscopic determination of the non-alpha isomers of bilirubin IX. The wavelength of maximum absorption and molar absorption coefficient of each dipyrrolic ethyl anthranilate azo pigment derived from the various bilirubin IX isomers are also reported.  相似文献   

16.
The peroxidative oxidation of bilirubin has been characterized in the ram seminal vesicle microsomal system. The oxidation was monitored by following the loss in absorbance of bilirubin at 440 nm. Bilirubin behaves as a peroxidase substrate for prostaglandin H synthase. The oxidation may be initiated by the addition of arachidonic acid or peroxides to incubations containing ram seminal vesicle microsomes and bilirubin, and is sensitive to inhibition by reduced glutathione. The arachidonate-dependent oxidation, but not the peroxide-initiated case, is inhibited by indomethacin. Similar results were obtained using microsomal preparations from mouse, rat, and pig lungs. Spectral and chromatographic examination of the products of bilirubin oxidation in the ram seminal vesicle system demonstrate that biliverdin is produced in this system by the dehydrogenation of bilirubin, but that this product accounts for only about 15% of the bilirubin consumed. Biliverdin itself is not oxidized in this system. At least three highly polar, fluorescent products also are formed from bilirubin. Though not identified, these polar products differ markedly in chromatographic behavior from the major fluorescent products obtained following the singlet oxygen oxidation or the autoxidation of bilirubin.  相似文献   

17.
We have developed a simple biologically non-invasive method for determining the critical micellar concentration (CMC) of bile salts using pure naturally occurring bilirubin IX alpha monoglucuronide (BMG), an important bile pigment present in virtually all mammalian biles. This methodology employs visible absorbance spectroscopy of BMG in bile salts over a range of bile salt concentrations that include the reported CMC. Using 100 microM-BMG in 0.4 M-imidazole buffer at pH 7.8, we calculated that the CMC for sodium taurochenodeoxycholate is between 2.5 and 3.0 mM based on: (1) an abrupt change in lambda max. in this concentration range, (2) a precipitous decrease in the amplitude of the absorbance shoulder at 450 nm, (3) a sudden decrease in the second derivative absorbance of BMG at 400 nm and an increase in absorbance at 470 nm, (4) a sharp change in the 4th derivative absorbance at 375 and 395 nm. In contrast, sodium taurocholate, a bile salt that reportedly does not have a CMC but continuously self-associates over a wide concentration range, exhibited none of these changes. The use of derivative spectroscopy enhances the ability to detect the CMC changes and also indicates the number of BMG species in solution and their relative energy states.  相似文献   

18.
Peroxidative oxidation of bilirubin during prostaglandin biosynthesis   总被引:1,自引:0,他引:1  
The peroxidative oxidation of bilirubin has been characterized in the ram seminal vesicle microsomal system. The oxidation was monitored by following the loss in absorbance of bilirubin at 440 nm. Bilirubin behaves as a peroxidase substrate for prostaglandin H synthase. The oxidation may be initiated by the addition of arachidonic acid or peroxides to incubations containing ram seminal vesicle microsomes and bilirubin, and is sensitive to inhibition by reduced glutathione. The arachidonate-dependent oxidation, but not the peroxide-initiated case, is inhibited by indomethacin. Similar results were obtained using microsomal preparations from mouse, rat, and pig lungs. Spectral and chromatographic examination of the products of bilirubin oxidation in the ram seminal vesicle system demonstrate that biliverdin is produced in this system by the dehydrogenation of bilirubin, but that this product accounts for only about 15% of the bilirubin consumed. Biliverdin itself is not oxidized in this system. At least three highly polar, fluorescent products also are formed from bilirubin. Though not identified, these polar products differ markedly in chromatographic behavior from the major fluorescent products obtained following the singlet oxygen oxidation or the autoxidation of bilirubin.  相似文献   

19.
Transition metal complexes of bilirubin and biliverdin were studied spectrophotometrically, in DMSO and in a boric acid-NaOH buffer mixture at pH 10.5. In the zinc(II) and cadmium(II)- bilirubin systems, 2:1 complexes are formed. Both in aqueous and in DMSO medium, the copper(II) ion oxidizes bilirubin to biliverdin. With all three metal ions, biliverdin forms 1:1 complexes, the stabilities of which are higher than those of the corresponding bilirubin complexes. Accordingly, these metal ions accelerate the oxidative transformations of bilirubin.  相似文献   

20.
It has been proposed that the neurotoxicity observed in severely jaundiced infants results from the binding of unconjugated bilirubin to nerve cell membranes. However, despite potentially important clinical ramifications, there remains significant controversy regarding the physical nature of bilirubin-membrane interactions. We used the technique of parallax analysis of fluorescence quenching (Chattopadhyay, A., and E. London. 1987. Biochemistry. 26: 39;-45) to measure the depth of penetration of bilirubin in model phospholipid bilayers. The localization of unconjugated bilirubin and ditaurobilirubin within small unilamellar vesicles composed of dioleoylphosphatidylcholine was determined through an analysis of the quenching of bilirubin fluorescence by spin-labeled phospholipids, and by bilirubin-mediated quenching of a series of anthroyloxy fatty acid probes at various depths within the membrane bilayer. Findings were further verified with potassium iodide as an aqueous quencher. Our results indicate that, at pH 10, unconjugated bilirubin localizes approximately 20 A from the bilayer center, in the region of the polar head groups. Further analyses suggest a modest influence of pH, membrane cholesterol content, and vesicle diameter on the bilirubin penetration depth. Taken together, these data support that, under physiologic conditions, bilirubin localizes to the polar region of phospholipid bilayers, near the membrane-water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号