首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
野皂荚多糖胶是一种从豆科皂荚属的灌木或小乔木野皂荚豆分离得到的半乳甘露聚糖胶,按照不同配比、浓度、温度、电解质种类配制野皂荚多糖胶与黄原胶的复配胶液,通过凝胶强度测定仪比较其复配胶液凝胶强度的变化情况。结果表明,野皂荚多糖胶和黄原胶通过分子间缠绕或者分子间次级键的相互作用使其形成凝胶,协同增效凝胶的最优工艺条件为:野皂荚多糖胶与黄原胶复配质量比为6∶4,总胶浓度2%,60℃水浴中加热30min,凝胶强度达到100.5 g/cm~2。加入氯化钾、氯化钠、磷酸二氢钾、氢氧化钾能显著提高复配胶液的凝胶强度。  相似文献   

2.
本研究依据石油压裂液的要求,以粘度、水不溶物含量两项指标对皂荚胶的羧甲基化改性进行工艺优化。皂荚胶的羧甲基化改性最优反应条件为:40 g原胶粉碱化时氢氧化钠用量为2.1 g、碱化时间为1.5 h、皂荚胶与氯乙酸钠摩尔比为1∶0.8、在65℃反应6 h时,皂荚胶原料水不溶物含量从26.91%降至2.07%,并且还能保持较高的粘度值640 m Pa.s。  相似文献   

3.
半乳甘露聚糖胶物理增粘技术的研究   总被引:6,自引:3,他引:3  
本文对瓜尔胶、胡芦巴胶、皂荚胶、野皂荚胶、田菁胶的水合增粘工艺进行了研究,并比较了螺杆盘磨式和轧辊刨片式两种增粘机。与原胶相比,增粘胶1%胶液粘度提高了50%,水不溶物含量降低了15%。  相似文献   

4.
以皂荚胚乳片为原料,以环氧丙烷为改性试剂,利用微水固相法制备羟丙基皂荚多糖,确立了最佳条件,即:皂荚多糖胶胚乳片10 g,加入10 m L 6%Na OH溶液,在35℃下搅拌碱化30 min,再加入2 m L的环氧丙烷,待胚乳片完全润胀,使用三辊研磨机将皂荚多糖胶的胚乳片压制成雪花片状,并放入反应器中进行醚化反应,控制反应温度为60℃和反应时间4 h。制备得到的羟丙基皂荚多糖水≤4.0%;表观粘度(1%溶液)≥1 500 m Pa·s;羟丙基取代度≥0.3; p H(1%溶液) 6.5~7.5。  相似文献   

5.
运用光学显微镜和电子显微镜分别对胡芦巴、野皂荚、皂荚、瓜尔豆、塔拉豆等五种豆科种子内胚乳细胞的形态、大小、壁厚等微观结构进行了观察比较。研究结果表明:五种种子内胚乳细胞壁几乎完全由胶状的透明的半乳甘露聚糖所填充,细胞的形态、大小差异较大,瓜尔豆、塔拉豆的内胚乳细胞呈球形或近球形;胡芦巴内胚乳细胞为多角形或多角椭圆形,它们细胞壁界限清晰,细胞排列整齐有规律;皂荚、野皂荚则为不规则的长椭球形,细胞壁彼此连接成片,界限模糊。一般地说:当细胞壁壁厚小于4μm时,胚乳胶粉中的水不溶物含量较低,1%浓度的胶液的粘度较高,而当壁厚大于4μm时,情况反之。本文的研究目的是为植物胶生产、加工提供一定的细胞学方面的依据。  相似文献   

6.
本文介绍了以野皂荚胶粉为原料,在80%乙醇溶液中与环氧乙烷进行醚化反应制备羟乙基改性胶的方法;分析测定了产品的取代度和粘度性质。  相似文献   

7.
絮凝-膜法制备皂荚皂苷工艺研究   总被引:1,自引:0,他引:1  
对皂荚种皮皂苷进行水法提取,采用阳离子瓜尔胶对提取液进行絮凝,再通过超滤、纳滤进行分离,制备获得的皂苷纯度为87.3%.研究认为,提取液中的皂苷与多糖、蛋白等杂质结合紧密,而阳离子瓜儿胶对杂质具有良好的选择性,因而絮凝处理是保证膜法分离过程的关键,其二者联用显示出良好的应用前景.  相似文献   

8.
烘炒法分离提取半乳甘露聚糖型种子胶   总被引:5,自引:0,他引:5  
种子多糖胶分离提取工艺试验表明,根据种子胚乳坚硬的物理性能,用机械分离方法分离种子胚乳,其多糖胶抽提率大于80%。烘炒法适用于种皮厚而硬一类种子胚乳的分离,正交试验表明烘炒温度对种子多糖胶抽提率和粘度指标影响最大;皂荚胚乳的最优化分离条件是种子在80℃下预热60min,然后在160℃烘炒机中烘炒4min,再进入开片、选片和筛选工序;野皂荚胚乳的分离条件是种子80℃时预热30min,130℃下烘炒3min。  相似文献   

9.
建立酸水解结合高速逆流色谱法从牛蒡子中快速分离制备高纯度牛蒡子苷元的方法。采用醇提酸解法提取,再经氯仿萃取得牛蒡子粗提物;以石油醚-乙酸乙酯-甲醇-水(2∶5∶3∶4,v/v)作为两相溶剂系统,在流速10 m L/min、转速850 rpm、检测波长280 nm下实现对牛蒡子苷元的快速分离制备。80 min内从连续两次进样的1200 mg牛蒡子粗提物中分离得到牛蒡子苷元318 mg,其纯度达99.12%,得率达26.5%。该方法简便、快速、高效,可用于牛蒡子苷元的快速分离制备,为牛蒡子的开发利用提供了参考依据。  相似文献   

10.
植物多糖胶流变性质的研究   总被引:10,自引:0,他引:10  
胡芦巴、皂荚、野皂荚和塔拉多糖胶水溶液随着浓度的增加,溶液表现为假塑性流体.表现粘度随剪切速率增大而减小。通过Cross模型和实验数据计算得到1%多糖胶零剪切速率时表现粘度η0、无穷大剪切速率时表现粘度η∞和弹性松驰时间等重要流变参数。根据Arrhenius方程和实验数据计算得到1%浓度多糖胶的粘度流化能E和常数A,皂荚胶和塔拉胶的粘流活化能大。时间对多糖胶液粘度影响较大,新配制的多糖胶液随着水化时间的延长,胶液表观粘度增大,胶液放置时间超过24h后,表现粘度随时间的延长而降低。pH值、冻融处理和盐离子对多糖胶表现粘度的影响不太大。多糖胶与硼离子形成的冻胶.其粘度因多糖胶品种而异,其中胡芦巴冻胶粘度最高,是野皂荚冻胶粘度的165倍和瓜尔胶冻胶粘度的2.7倍。  相似文献   

11.
12.
13.
14.
15.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

16.
17.
Evolution of living organisms is closely connected with evolution of structure of the system of regulations and its mechanisms. The functional ground of regulations is chemical signalization. As early as in unicellular organisms there is a set of signal mechanisms providing their life activity and orientation in space and time. Subsequent evolution of ways of chemical signalization followed the way of development of delivery pathways of chemical signal and development of mechanisms of its regulation. The mechanism of chemical regulation of the signal interaction is discussed by the example of the specialized system of transduction of signal from neuron to neuron, of effect of hormone on the epithelial cell and modulation of this effect. These mechanisms are considered as the most important ways of the fine and precise adaptation of chemical signalization underlying functioning of physiological systems and organs of the living organism  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号