共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Nakamura T Kawai Y Kunimoto K Iwasaki Y Nishii K Kataoka M Ishikawa K 《Journal of molecular biology》2012,422(1):33-44
L-Cysteine is synthesized from O-acetyl-L-serine (OAS) and sulfide by O-acetylserine sulfhydrylase (OASS; EC 2.5.1.47) in plants and bacteria. O-phosphoserine sulfhydrylase (OPSS; EC 2.5.1.65) is a novel enzyme from the hyperthermophilic aerobic archaeon Aeropyrum pernix K1 (2003). OPSS can use OAS or O-phospho-L-serine (OPS) to synthesize L-cysteine. To elucidate the mechanism of the substrate specificity of OPSS, we analyzed three-dimensional structures of the active site of the enzyme. The active-site lysine (K127) of OPSS forms an internal Schiff base with pyridoxal 5'-phosphate. Therefore, crystals of the complexes formed by the K127A mutant with the external Schiff base of pyridoxal 5'-phosphate with either OPS or OAS were prepared and examined by X-ray diffraction analysis. In contrast to that observed for OASS, no significant difference was seen in the overall structure between the free and complexed forms of OPSS. The side chains of T152, S153, and Q224 interacted with the carboxylate of the substrates, as a previous study has suggested. The side chain of R297 has been proposed to recognize the phosphate group of OPS. Surprisingly, however, the position of R297 was significantly unchanged in the complex of the OPSS K127A mutant with the external Schiff base, allowing enough space for an interaction with OPS. The positively charged environment around the entrance of the active site including S153 and R297 is important for accepting negatively charged substrates such as OPS. 相似文献
4.
5.
6.
Miha Črnigoj Rok Kostanjšek Gönül Kaletunç Nataša Poklar Ulrih 《World journal of microbiology & biotechnology》2008,24(10):2115-2123
The interactions of DNA-binding dyes (Hoechst 33258, DAPI, acridine orange) and DiBAC4(3) with hyperthermophilic archaeon Aeropyrum pernix cells were investigated by the combination of calorimetric, spectroscopic and microscopic techniques. All of the dyes, studied
here, affect the thermal stability of DNA in vivo and in vitro. Hoechst 33258 is highly DNA-specific probe, which does not
affect the thermal transitions of other cellular components as can be detected by differential scanning calorimetry (DSC).
Due to this unique property, it can be used as a potential DNA marker for in vivo DSC studies. The localization of the dyes
in the cells and viability assay was revealed by fluorescence microscopy. Hoechst 33258, DAPI and acridine orange did not
distinguish between viable and non-viable cells of Aeropyrum pernix. Only with the commercially available Live/Dead BacLightTM kit we were able to discriminate viable and non-viable Aeropyrum pernix cells. 相似文献
7.
8.
Yosuke Sanuki Yumiko Kubota Masato T Kanemaki Tatsuro S Takahashi Satoru Mimura Haruhiko Takisawa 《Cell cycle (Georgetown, Tex.)》2015,14(7):1010-1023
Eukaryotic DNA replication is initiated through stepwise assembly of evolutionarily conserved replication proteins onto replication origins, but how the origin DNA is unwound during the assembly process remains elusive. Here, we established a site-specific origin on a plasmid DNA, using in vitro replication systems derived from Xenopus egg extracts. We found that the pre-replicative complex (pre-RC) was preferentially assembled in the vicinity of GAL4 DNA-binding sites of the plasmid, depending on the binding of Cdc6 fused with a GAL4 DNA-binding domain in Cdc6-depleted extracts. Subsequent addition of nucleoplasmic S-phase extracts to the GAL4-dependent pre-RC promoted initiation of DNA replication from the origin, and components of the pre-initiation complex (pre-IC) and the replisome were recruited to the origin concomitant with origin unwinding. In this replication system, RecQ4 is dispensable for both recruitment of Cdc45 onto the origin and stable binding of Cdc45 and GINS to the pre-RC assembled plasmid. However, both origin binding of DNA polymerase α and unwinding of DNA were diminished upon depletion of RecQ4 from the extracts. These results suggest that RecQ4 plays an important role in the conversion of pre-ICs into active replisomes requiring the unwinding of origin DNA in vertebrates. 相似文献
9.
The Tetrahymena thermophila origin recognition complex (ORC) contains an integral RNA subunit, 26T RNA, which confers specificity to the amplified ribosomal DNA (rDNA) origin by base pairing with an essential cis‐acting replication determinant—the type I element. Using a plasmid maintenance assay, we identified a 6.7 kb non‐rDNA fragment containing two closely associated replicators, ARS1‐A (0.8 kb) and ARS1‐B (1.2 kb). Both replicators lack type I elements and hence complementarity to 26T RNA, suggesting that ORC is recruited to these sites by an RNA‐independent mechanism. Consistent with this prediction, although ORC associated exclusively with origin sequences in the 21 kb rDNA minichromosome, the interaction between ORC and the non‐rDNA ARS1 chromosome changed across the cell cycle. In G2 phase, ORC bound to all tested sequences in a 60 kb interval spanning ARS1‐A/B. Remarkably, ORC and Mcm6 associated with just the ARS1‐A replicator in G1 phase when pre‐replicative complexes assemble. We propose that ORC is stochastically deposited onto newly replicated non‐rDNA chromosomes and subsequently targeted to preferred initiation sites prior to the next S phase. 相似文献
10.
John A. Bryant 《Plant biosystems》2013,147(4-6):855-863
Abstract The initiation of DNA replication is a key step in the cell division cycle and in DNA endoreduplication. Initiation of replication takes place at specific places in chromosomes known as replication origins. These are subject to temporal regulation within the cell cycle and may also be regulated as a function of plant development. In yeast, replication origins are recognised and bound by three different groups of proteins at different stages of the cell cycle. Of these, the MCM proteins are the most likely to be involved in activating the origins in order to facilitate initiation. MCM-like proteins also occur in plants, but have not been characterised in detail. Other proteins which bind to origins have been identified, as has a protein with a strong affinity for ds-ss junctions in DNA molecules. 相似文献
11.
Using an in vitro chromatin assembly assay in Xenopus egg extract, we show that cyclin E binds specifically and saturably to chromatin in three phases. In the first phase, the origin recognition complex and Cdc6 prereplication proteins, but not the minichromosome maintenance complex, are necessary and biochemically sufficient for ATP-dependent binding of cyclin E--Cdk2 to DNA. We find that cyclin E binds the NH(2)-terminal region of Cdc6 containing Cy--Arg-X-Leu (RXL) motifs. Cyclin E proteins with mutated substrate selection (Met-Arg-Ala-Ile-Leu; MRAIL) motifs fail to bind Cdc6, fail to compete with endogenous cyclin E--Cdk2 for chromatin binding, and fail to rescue replication in cyclin E--depleted extracts. Cdc6 proteins with mutations in the three consensus RXL motifs are quantitatively deficient for cyclin E binding and for rescuing replication in Cdc6-depleted extracts. Thus, the cyclin E--Cdc6 interaction that localizes the Cdk2 complex to chromatin is important for DNA replication. During the second phase, cyclin E--Cdk2 accumulates on chromatin, dependent on polymerase activity. In the third phase, cyclin E is phosphorylated, and the cyclin E--Cdk2 complex is displaced from chromatin in mitosis. In vitro, mitogen-activated protein kinase and especially cyclin B--Cdc2, but not the polo-like kinase 1, remove cyclin E--Cdk2 from chromatin. Rebinding of hyperphosphorylated cyclin E--Cdk2 to interphase chromatin requires dephosphorylation, and the Cdk kinase-directed Cdc14 phosphatase is sufficient for this dephosphorylation in vitro. These three phases of cyclin E association with chromatin may facilitate the diverse activities of cyclin E--Cdk2 in initiating replication, blocking rereplication, and allowing resetting of origins after mitosis. 相似文献
12.
Summary We demonstrated that the 1055 by restriction fragment containing OriA, a chloroplast DNA replication origin of Chlamydomonas reinhardtii, has electrophoretic anomalies characteristic of bent DNA. A tandem dimer of the region was constructed. Quantitative measurement of the relative gel mobility of a set of permuted fragments was used to extrapolate the approximate position of the bent DNA segment. By analyzing the gel mobility of short, sequenced fragments of the bent DNA region, the putative bending locus was identified. Two A4 tracts and two A5 tracts were located in the bending locus. Oligonucleotide-directed mutagenesis was then used to disrupt the A tract or the spacing between A tracts and the effect of site-specific mutation on electrophoretic mobility was analyzed. To assess the functional role of the bent DNA region, subclones containing the bending locus, mutated bending locus, and regions flanking the bending locus were constructed. Each subclone was used as template in an in vitro DNA replication system which preferentially initiated DNA replication at OriA. A 224 by subclone with the bending locus positioned in the middle displayed the highest replication function and was sufficient to initiate DNA replication in vitro. Site-specific mutations or alterations of the A tracts resulted in decreased DNA bending and decreased DNA replication activity. 相似文献
13.
Yutaka Takeda Hideo Hirokawa Toshiyuki Nagata 《Molecular & general genetics : MGG》1992,232(2):191-198
Summary When tobacco suspension culture line BY2 cells in stationary phase are transferred into fresh medium, replication of proplastid DNA proceeds for 24 h in the absence of nuclear DNA replication. Replicative intermediates of the proplastid DNA concentrated by benzoylated, naphthoylated DEAE cellulose chromatography, were radioactively labelled and hybridized to several sets of restriction endonuclease fragments of tobacco chloroplast DNA. The intermediates hybridized preferentially to restriction fragments in the two large inverted repeats. Mapping of D-loops and of restriction fragment lengths by electron microscopy permitted the localization of the replication origin, which was close to the 23S rRNA gene in the inverted repeats. The replication origins in both segments of the inverted repeat in tobacco proplastid DNA were active in vivo. 相似文献
14.
15.
16.
17.
Gene recognition based on nucleotide distribution of ORFs in a hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. 总被引:1,自引:0,他引:1
The 2694 ORFs originally annotated as potential genes in the genome of Aeropyrum pernix can be categorized into three clusters (A, B, C), according to their nucleotide composition at three codon positions. Coding potential was found to be responsible for the phenomenon of three clusters in a 9-dimensional space derived from the nucleotide composition of ORFs: ORFs assigned to cluster A are coding ones, while those assigned to clusters B and C are non-coding ORFs. A "codingness" index called the AZ score is defined based on a clustering method used to recognize protein-coding genes in the A. pernix genome. The criterion for a coding or non-coding ORF is based on the AZ score. ORFs with AZ > 0 or AZ < 0 are coding or non-coding, respectively. Consequently, 620 out of 632 ORFs with putative functions based on the original annotation are contained in cluster A, which have positive AZ scores. In addition, all 29 ORFs encoding putative or conserved proteins newly added in RefSeq annotation also have positive AZ scores. Accordingly, the number of re-recognized protein-coding genes in the A. pernix genome is 1610, which is significantly less than 2694 in the original annotation and also much less than 1841 in the RefSeq annotation curated by NCBI staff. Annotation information of re-recognized genes and their AZ scores are available at: http://tubic.tju.edu.cn/Aper/. 相似文献
18.
Single replication origin of the archaeon Methanosarcina mazei revealed by the Z curve method 总被引:5,自引:0,他引:5
The genomic sequence of the archaeon Methanosarcina mazei has been analyzed by the Z curve method. The Z curve is a three-dimensional curve that uniquely represents the given DNA sequence. The three-dimensional Z curve and its x and y components for the genome of M. mazei show a sharp peak and relatively broad peak, respectively. The cdc6 gene is located exactly at the position of the sharp peak. Based on the known behavior of the Z curves for the archaea whose replication origins have been identified, we hypothesize that the replication origin and termination sites correspond to the positions of the sharp peak and broad peak, respectively. We have located an intergenic region that is between the cdc6 gene (MM1314) and the gene for an adjacent protein (MM1315), which shows strong characteristics of the known replication origins. This region is highly rich in AT and contains multiple copies of consecutive repeats. Our results strongly suggest that the single replication origin of M. mazei is situated at the intergenic region between the cdc6 gene and the gene for the adjacent protein, from 1,564,657 to 1,566,241 bp of the genome. 相似文献
19.
20.
Richard Pelletier David Mah Suzanne Landry Diamanto Matheos Gerald B. Price Maria Zannis-Hadjopoulos 《Journal of cellular biochemistry》1997,66(1):87-97
We have generated a panel of deletion mutants of ors12 (812-bp), a mammalian origin of DNA replication previously isolated by nascent strand extrusion from early replicating African Green monkey (CV-1) DNA. The deletion mutants were tested for their replication activity in vivo by the bromodeoxyuridine substitution assay, after transfection into HeLa cells, and in vitro by the DpnI resistance assay, using extracts from HeLa cells. We identified a 215-bp internal fragment as essential for the autonomous replication activity of ors12. When subcloned into the vector pML2 and similarly tested, this subfragment was capable of autonomous replication in vivo and in vitro. Several repeated sequence motifs are present in this 215-bp fragment, such as TGGG(A) and G(A)AG (repeated four times each); TTTC, AGG, and CTTA (repeated 3 times each); the motifs CACACA and CTCTCT, and two imperfect inverted repeats, 22 and 16 bp long, respectively. The overall sequence of the 215-bp fragment is G/C-rich (50.2%), by comparison to the 186-bp (33.5% G/C-rich) minimal sequence required for the autonomous replication activity of ors8, another functional ors that was similarly isolated and characterized. J. Cell. Biochem. 66:87–97, 1997. © 1997 Wiley-Liss, Inc. 相似文献