首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The minimization of the non-specific factors of neurofeedback (NF) is an important aspect to further advance in the understanding of the effects of these types of procedures. This paper investigates the NF effects of a single session (25 min) of individual upper alpha enhancement following a sham-controlled experimental design (19 healthy participants). We measured immediate effects after the training and 1-day lasting EEG effects (eyes closed resting state and task-related activity), as well as the event-locked EEG effects during the execution of a mental rotation task. These metrics were computed in trained (upper alpha) and non-trained EEG parameters (lower alpha and lower beta). Several cognitive functions were assessed such as working memory and mental rotation abilities. The NF group showed increased upper alpha power after training in task-related activity (not significantly sustained 1 day after) and higher pre-stimulus power during the mental rotation task. Both groups improved cognitive performance, with a more prominent improvement for the NF group, however a single session seems to be insufficient to yield significant differences between groups. A higher number of training sessions seems necessary to achieve long-lasting effects on the electrophysiology and to enhance the behavioral effects.  相似文献   

2.
IntroductionMental impairments, including deterioration of mood and cognitive performance, are known to occur during isolation and space missions, but have been insufficiently investigated. Appropriate countermeasures are required, such as exercise, which is known to prevent mood disorders for prolonged space and isolation missions. Based on the interaction of brain activity, mood and cognitive performance, this study aims to investigate the effect of long-term isolation and confinement and the long-term effect of exercise on these parameters.MethodsEight male volunteers were isolated and confined for about eight month during the winter period at the Antarctic Concordia Station. Every six weeks electroencephalographic measurements were recorded under rest conditions, and cognitive tests and a mood questionnaire were executed. Based individual training logs, subjects were afterwards separated into an active (> 2500 arbitrary training units/interval) or inactive (< 2500 arbitrary training units/interval) group.ResultsA long-term effect of exercise was observed for brain activity and mood. Regularly active people showed a decreased brain activity (alpha and beta) in the course of isolation, and steady mood. Inactive people instead first increased and than remained at high brain activity accompanied with a deterioration of mood. No effect of exercise and isolation was found for cognitive performance.ConclusionThe findings point out the positive effect of regularly performed voluntary exercise, supporting subjective mental well-being of long-term isolated people. The choice to be regularly active seems to support mental health, which is not only of interest for future isolation and space missions.  相似文献   

3.

Background

Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group.

Methods

The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8–12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively.

Results

The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8–12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group.

Conclusions

Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.
  相似文献   

4.

Purpose

Working memory (WM) represents the brain’s ability to maintain information in a readily available state for short periods of time. This study examines the resting-state cortical activity patterns that are most associated with performance on a difficult working-memory task.

Methods

Magnetoencephalographic (MEG) band-passed (delta/theta (1–7 Hz), alpha (8–13 Hz), beta (14–30 Hz)) and sensor based regional power was collected in a population of adult men (18–28 yrs, n = 24) in both an eyes-closed and eyes-open resting state. The normalized power within each resting state condition as well as the normalized change in power between eyes closed and open (zECO) were correlated with performance on a WM task. The regional and band-limited measures that were most associated with performance were then combined using singular value decomposition (SVD) to determine the degree to which zECO power was associated with performance on the three-back verbal WM task.

Results

Changes in power from eyes closed to open revealed a significant decrease in power in all band-widths that was most pronounced in the posterior brain regions (delta/theta band). zECO right posterior frontal and parietal cortex delta/theta power were found to be inversely correlated with three-back working memory performance. The SVD evaluation of the most correlated zECO metrics then provided a singular measure that was highly correlated with three-back performance (r = −0.73, p<0.0001).

Conclusion

Our results indicate that there is an association between WM performance and changes in resting-state power (right posterior frontal and parietal delta/theta power). Moreover, an SVD of the most associated zECO measures produces a composite resting-state metric of regional neural oscillatory power that has an improved association with WM performance. To our knowledge, this is the first investigation that has found that changes in resting state electromagnetic neural patterns are highly associated with verbal working memory performance.  相似文献   

5.
In order to estimate the effect of simultaneous α EEG stimulating and electromyogram (EMG) decreasing biofeedback training on the α activity and cognitive functions, fluency, accuracy, and flexibility during cognitive tasks, as well as α-activity characteristics before, during, and after ten training sessions of voluntarily increasing α power in an individual upper α range with the eyes closed were studied in 27 healthy men aged 18–34 years. To isolate the biofeedback effect in training for the α power increase, data on two groups of subjects were compared: an experimental group (14 subjects) with true biofeedback and a control group (13 subjects) with sham biofeedback. Follow-up testing was performed one month after the end of training to estimate the stability of the effect. The results showed that the training for the upper α power increase using biofeedback increased the frequency, width, and power in an individual upper α range at rest and improved cognitive performance only in subjects with a low baseline α frequency. Conversely, sham biofeedback training (without the feedback signal) increased the α power, though less efficiently, only in subjects with a high baseline α frequency, this increase was not accompanied by improved cognitive performance. The biofeedback α training eliminated the decrease in the α amplitude in response to a cognitive task after the biofeedback training course, this effect being preserved within one month. It may be concluded that α EEG-EMG biofeedback training can be used for improving cognitive processes in healthy subjects, as well as for prognostic purposes in clinical practice and in the brain-computer interface technology.  相似文献   

6.
In the present experiment the instruction to relax was given to awake highly (Highs) and non hypnotizable subjects (Lows), while their heart rate, respirogram and skin resistance were recorded together with electroencephalogram, electroculogram and corrugator electromiogram. At the beginning of the experiment, Highs exhibited no significant difference in heart rate (HR), respiratory frequency (RF) and heart rate variability (HRV) with respect to Lows, but showed a higher EEG alpha and theta1 power. During the session, both groups decreased their heart rate, but changes were significant only in Lows, which increased significantly also the parasympathetic component of their HRV (high frequency, HF). In both groups, EEG showed alpha, beta2 and theta2 power decrements; theta1 activity decreased only in Lows, while gamma power increased in Highs and decreased in Lows. Results suggest that Highs and Lows used different cognitive strategies in the elaboration of the relaxation request and that Highs performed the task through a higher integrative activity.  相似文献   

7.
Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson’s disease; yet, the mechanism of action is unclear. Since Parkinson’s and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4–7.5 Hz), low alpha (8–10 Hz), high alpha (10.5–12 Hz), beta (13–30 Hz) and gamma (31–50 Hz) bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents – at 10, 26, 42, 58, 74 and 90% of sensory threshold – to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20–25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously-described cognitive and motor effects of vestibular stimulation, and noisy galvanic vestibular stimulation may provide an additional non-invasive means for neuromodulation of functional brain networks.  相似文献   

8.
Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.  相似文献   

9.
With the aim simultaneous alpha EEG stimulating and EMG decreasing biofeedback training impact on the alpha-activity and cognitive functions 27 healthy male subjects (18-34 years) were investigated in pre- and post 10 training sessions of the voluntary increasing alpha power in individual upper alpha range. The accuracy of conceptual span task, fluency and flexibility in alternatives use task performance and alpha-activity indices were compared in real (14 participants) and sham (13 participants) biofeedback groups for the discrimination of the feedback role in training. The follow up effect oftrainings was studied through month over the training sessions. Results showed that alpha biofeedback training enhanced the fluency and accuracy in cognitive performance, increased resting frequency, width and power in individual upper alpha range only in participants with low baseline alpha frequency. While mock biofeedback increased resting alpha power only in participants with high baseline resting alpha frequency and did not change the cognitive performance. Biofeedback training eliminated the alpha power decrease in response to arithmetic task in both with high and low alpha frequency participants and this effect was followed up over the month. Mock biofeedback training has no such effect. It could be concluded that alpha-EEG-EMG biofeedback has application not only for cognition enhancement, but also in prognostic aims in clinical practice and brain-computer interface technology.  相似文献   

10.
The relationships between some characteristics of EEG topographic maps and personality traits (extraversion-introversion, sensation-intuition, thinking-feeling, judging-impulsiveness) by the Keirsey's Type Inventory were studied in 46 17-20-year-old men). The most considerable distinctions in the spatial organization of the EEG were observed between the functions sensation and intuition. The high-sensation responders were characterized by higher EEG power in the theta 1, 2 and alpha 1-bands in all derivations and higher coherence (especially in the theta 1, 2 bands most expressed in the frontoparietal areas) as compared with the high-intuition responders. The expression of extraversion was positively correlated with coherence values in the theta 1, 2 and negatively correlated with coherence in the alpha 1, 2 bands. Characteristic EEG patterns for other types of personality traits were also described. The results suggest that some characteristics of brain maps reflect the individual psychological features determined on the basis of Jung's typology.  相似文献   

11.
Stability of the cognitive set to nonsense words in healthy adult subjects was compared in two experimental conditions: (1) subjects had only to recognize pseudowords/words; (2) in each trial after the pseudoword/word recognition, subjects had to press a button in response to a visual probe stimulus and only after this action to pronounce a recognized pseudoword/word. It was shown that complication of the cognitive performance in the second condition did not affect the set rigidity. However, the pattern of the cortical electric activity substantially changed: the EEG power in the theta frequency range and coherence function, in particular, interhemispheric, in the frontal cortical areas were higher in the second condition. The increase in coherence function in the frontal areas was most pronounced in the theta and alphal ranges. It was suggested that increase in activity of the frontal regions of the brain cortex facilitates shifts of visual sets under increasing load of the working memory.  相似文献   

12.
The objective of this work was to explore Neurofeedback (NFB) effects on EEG current sources in Learning Disabled (LD) children, and to corroborate its beneficial consequences on behavioral and cognitive performance. NFB was given in twenty 30-min sessions to 11 LD children to reduce their abnormally high theta/alpha ratios (Experimental Group). Another five LD children with the same characteristics received a placebo treatment (Control Group). In the Control Group no changes in behavior or EEG current source were observed. In the Experimental Group, immediately after treatment children showed behavioral and cognitive improvements, but current source analysis showed few modifications; however, 2 months after treatment many changes occurred: a decrease in current of frequencies within the theta band, mainly in left frontal and cingulate regions, and enhancement in current of frequencies within the alpha band, principally in the right temporal lobe and right frontal regions, and of frequencies within the beta band, mainly in left temporal, right frontal and cingulate cortex regions. In conclusion, NFB is a possibly efficacious treatment for LD children with an abnormally high theta/alpha ratio in any lead. The changes observed in EEG current sources may reflect the neurophysiological bases of the improvement that children experienced in their behavioral and cognitive activities.  相似文献   

13.
The purpose of this study was to investigate the effect of the exposure to bright light on EEG activity and subjective sleepiness at rest and at the mental task during nocturnal sleep deprivation. Eight male subjects lay awake in semi-supine in a reclining seat from 21:00 to 04:30 under the bright (BL; >2500 lux) or the dim (DL; <150 lux) light conditions. During the sleep deprivation, the mental task (Stroop color-word conflict test: CWT) was performed each 15 min in one hour. EEG, subjective sleepiness, rectal and mean skin temperatures and urinary melatonin concentrations were measured. The subjective sleepiness increased with time of sleep deprivation during both rest and CWT under the DL condition. The exposure to bright light delayed for 2 hours the increase in subjective sleepiness at rest and suppressed the increase in that during CWT. The bright light exposure also delayed the increase in the theta and alpha wave activities in EEG at rest. In contrast, the effect of the bright light exposure on the theta and alpha wave activities disappeared by CWT. Additionally, under the BL condition, the entire theta activity during CWT throughout nocturnal sleep deprivation increased significantly from that in a rest condition. Our results suggest that the exposure to bright light throughout nocturnal sleep deprivation influences the subjective sleepiness during the mental task and the EEG activity, as well as the subjective sleepiness at rest. However, the effect of the bright light exposure on the EEG activity at the mental task diminishes throughout nocturnal sleep deprivation.  相似文献   

14.
Some researchers have suggested that the default mode network (DMN) plays an important role in the pathological mechanisms of Alzheimer’s disease (AD). To examine whether the cortical activities in DMN regions show significant difference between mild AD from mild cognitive impairment (MCI), electrophysiological responses were analyzed from 21 mild Alzheimer’s disease (AD) and 21 mild cognitive impairment (MCI) patients during an eyes closed, resting-state condition. The spectral power and functional connectivity of the DMN were estimated using a minimum norm estimate (MNE) combined with fast Fourier transform and imaginary coherence analysis. Our results indicated that source-based EEG maps of resting-state activity showed alterations of cortical spectral power in mild AD when compared to MCI. These alterations are characteristic of attenuated alpha or beta activities in the DMN, as are enhanced delta or theta activities in the medial temporal, inferior parietal, posterior cingulate cortex and precuneus. With regard to altered synchronization in AD, altered functional interconnections were observed as specific connectivity patterns of connection hubs in the precuneus, posterior cingulate cortex, anterior cingulate cortex and medial temporal regions. Moreover, posterior theta and alpha power and altered connectivity in the medial temporal lobe correlated significantly with scores obtained on the Mini-Mental State Examination (MMSE). In conclusion, EEG is a useful tool for investigating the DMN in the brain and differentiating early stage AD and MCI patients. This is a promising finding; however, further large-scale studies are needed.  相似文献   

15.
The tolerable work duration (t) for high-intensity cycling is well described as a hyperbolic function of power (W): W = (W'.t-1) + Wa, where Wa is the upper limit for sustainable power (lying between maximum W and the threshold for sustained blood [lactate] increase, theta lac), and W' is a constant which defines the amount of work which can be performed greater than Wa. As training increases the tolerable duration of high-intensity cycling, we explored whether this reflected an alteration of Wa, W' or both. Before and after a 7-week regimen of intense interval cycle-training by healthy males, we estimated ( ) theta lac and determined maximum O2 uptake (mu VO2); Wa; W'; and the temporal profiles of pulmonary gas exchange, blood gas, acid-base and metabolic response to constant-load cycling at and above Wa. Although training increased theta lac (24%), mu VO2 (15%) and Wa (15%), W' was unaffected. For exercise at Wa, a steady state was attained for VO2, [lactate] and pH both pre- and post-training, despite blood [norepinephrine] and [epinephrine] ([NE], [E]) and rectal temperature continuing to rise. For exercise greater than Wa, there was a progressive increase in VO2 (resulting in mu VO2 at fatigue), [lactate], [NE], [E] and rectal temperature, and a progressive decrease for pH. We conclude that the increased endurance capacity for high-intensity exercise following training reflects an increased W asymptote of the W-t relationship with no effect on its curvature; consequently, there is no appreciable change in the amount of work which can be performed above Wa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Adequate rest is essential to avoid fatigue and disruption of homeostasis. However, the neural mechanisms underlying the decision to rest are not well understood. In the present study, we aimed to clarify the neural mechanisms of this decision-making process using magnetoencephalography. Fifteen healthy volunteers participated in decision and control experiments performed in a cross-over fashion. In the decision experiment, participants performed 1,200 reverse Stroop test trials and were intermittently asked to decide whether they wanted to take a rest or continue. In the control experiments, participants performed 1,200 reverse Stroop test trials and were instructed to press a response button intermittently without making any decision. Changes in oscillatory brain activity were assessed using a narrow-band adaptive spatial filtering method. The levels of decrease in theta (4–8 Hz) band power in left Brodmann''s area (BA) 31, alpha (8–13 Hz) band power in left BA 10 and BA 9, and beta (13–25 Hz) band power in right BA 46 and left BA 10 were greater in trials when the participant opted to rest (rest trials) than those in control trials. The decrease in theta band power in BA 31 in the rest trials was positively correlated with the subjective level of fatigue after the decision experiment. These results demonstrated that the dorsolateral prefrontal cortex, frontal pole, and posterior cingulate cortex play a role in the decision to rest in the presence of fatigue. These findings may help clarify the neural mechanisms underlying fatigue and fatigue-related problems.  相似文献   

17.
ABSTRACT: BACKGROUND: Prophylaxis to prevent relapses in the central nervous system after childhood acute lymphoblastic leukemia (ALL) used to consist of both intrathecal chemotherapy (CT) and cranial irradiation (CRT). CRT was mostly abolished in the eighties because of its neurotoxicity, and replaced with more intensive intrathecal CT. In this study, a group of survivors treated with CRT before 1983 and another group treated without CRT thereafter are investigated 20--25 years later, giving a much stronger perspective on long-term quality of life than previous studies. The outcomes will help to better understand these groups' current needs and will aid in anticipating late effects of prophylactic CRT that is currently applied for other diseases.This study evaluates oscillatory neuronal activity in these long-term survivors. Power spectrum deviations are hypothesized to correlate with cognitive dysfunction. METHODS: Resting state eyes-closed magnetoencephalography (MEG) recordings were obtained from 14 ALL survivors treated with CT + CRT, 18 treated with CT alone and 35 controls. Relative spectral power was calculated in the delta, theta, alpha1, alpha2, beta and gamma frequency bands. The Amsterdam Neuropsychological Tasks (ANT) program was used to assess cognition in the executive functions domain. MEG data and ANT scores were correlated. RESULTS: In the CT + CRT group, relative theta power was slightly increased (p = 0.069) and alpha2 power was significantly decreased (p = 0.006). The CT + CRT group performed worse on various cognitive tests. A deficiency in visuomotor accuracy, especially of the right hand, could be clearly associated with the deviating regional theta and alpha2 powers (0.471 < r < 0.697). A significant association between decreased regional alpha2 power and less attentional fluctuations was found for CT + CRT patients as well as controls (0.078 < r < 0.666). Patients treated with CT alone displayed a power spectrum similar to controls, except for a significantly increased level of left frontal alpha2 power (p = 0.030). CONCLUSIONS: The tendency towards global slowing of brain oscillatory activity, together with the fact that dementia has been reported as a late effect of CRT and the neuropsychological deficiencies currently present, suggest that the irradiated brain might be aging faster and could be at risk for early onset dementia. The CT group showed no signs of early aging.  相似文献   

18.
Cognitive impairment (CI), often examined with neuropsychological tests such as the Paced Auditory Serial Addition Test (PASAT), affects approximately 65% of multiple sclerosis (MS) patients. The P3b event-related potential (ERP), evoked when an infrequent target stimulus is presented, indexes cognitive function and is typically compared across subjects'' scalp electroencephalography (EEG) data. However, the clustering of independent components (ICs) is superior to scalp-based EEG methods because it can accommodate the spatiotemporal overlap inherent in scalp EEG data. Event-related spectral perturbations (ERSPs; event-related mean power spectral changes) and inter-trial coherence (ITCs; event-related consistency of spectral phase) reveal a more comprehensive overview of EEG activity. Ninety-five subjects (56 MS patients, 39 controls) completed visual and auditory two-stimulus P3b event-related potential tasks and the PASAT. MS patients were also divided into CI and non-CI groups (n = 18 in each) based on PASAT scores. Data were recorded from 128-scalp EEG channels and 4 IC clusters in the visual, and 5 IC clusters in the auditory, modality were identified. In general, MS patients had significantly reduced ERSP theta power versus controls, and a similar pattern was observed for CI vs. non-CI MS patients. The ITC measures were also significantly different in the theta band for some clusters. The finding that MS patients had reduced P3b task-related theta power in both modalities is a reflection of compromised connectivity, likely due to demyelination, that may have disrupted early processes essential to P3b generation, such as orientating and signal detection. However, for posterior sources, MS patients had a greater decrease in alpha power, normally associated with enhanced cognitive function, which may reflect a compensatory mechanism in response to the compromised early cognitive processing.  相似文献   

19.
Results illustrating an atypical neural processing in the early and late differentiation of infant faces have been obtained with neglectful mothers. The present study explores whether a different pattern of response is observed when using non-infant affective pictures. We examined the event-related evoked potentials and induced delta, theta and alpha activity in 14 neglectful mothers and 14 control mothers elicited while categorizing positive, negative and neutral pictures from the International Affective Picture System. Self-reports of anhedonia and empathy were also recorded. Early posterior negativity, P200 and late positive potential components were modulated by the emotional content of pictures in both groups. However, the LPP waveform had a more delayed and more attenuated maximum in neglectful mothers than in control mothers. Oscillatory responses indicated lower power increases for neglectful mothers than for control mothers in delta (1–4 Hz), theta (4–8 Hz) and lower alpha (8–10 Hz) bands at frontal sites, and a more consistent increase for neglectful mothers in theta and lower alpha bands at occipital sites, especially for negative pictures. These findings help us to better understand the limits of emotional insensitivity in neglectful mothers.  相似文献   

20.
Human observers tend to group oriented line segments into full contours if they follow the Gestalt rule of ''good continuation''. It is commonly assumed that contour grouping emerges automatically in early visual cortex. In contrast, recent work in animal models suggests that contour grouping requires learning and thus involves top-down control from higher brain structures. Here we explore mechanisms of top-down control in perceptual grouping by investigating synchronicity within EEG oscillations. Human participants saw two micro-Gabor arrays in a random order, with the task to indicate whether the first (S1) or the second stimulus (S2) contained a contour of collinearly aligned elements. Contour compared to non-contour S1 produced a larger posterior post-stimulus beta power (15–21 Hz). Contour S2 was associated with a pre-stimulus decrease in posterior alpha power (11–12 Hz) and in fronto-posterior theta (4–5 Hz) phase couplings, but not with a post-stimulus increase in beta power. The results indicate that subjects used prior knowledge from S1 processing for S2 contour grouping. Expanding previous work on theta oscillations, we propose that long-range theta synchrony shapes neural responses to perceptual groupings regulating lateral inhibition in early visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号