首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Low density lipoprotein (LDL) receptor-deficient (LDLR-/-) mice consuming a high fat diet were used to assess the effect of endogenous and exogenous estradiol (E2) on atherosclerosis. Sexually mature female mice were ovariectomized (OVX) and implanted with subcutaneous, slow-release pellets designed to release 6 microg/day of exogenous 17beta-estradiol (17beta-E2 ), 17alpha-estradiol (17alpha-E2 ), or placebo (E2- deficient). Sham-operated control female (endogenous E2 ) and male mice were studied as controls. Aortic atherosclerotic lesion area was reduced by physiologic amounts of both endogenous and exogenous E2 compared to E2-deficient female mice. Although plasma cholesterol levels were reduced by exogenous E2 despite the absence of the LDL receptor, endogenous E2 was not associated with any cholesterol changes. In contrast, only 17alpha-E2 was associated with decreased fasting triglyceride. In subgroup analyses matched for time-averaged plasma total cholesterol, aortic lesion area was reduced by the presence of estradiol (E2 ). E2 protected LDLR-/- female mice from atherosclerosis and this protection was independent of changes in plasma cholesterol levels.  相似文献   

2.
The low density lipoprotein receptor (LDLR) plays a major role in regulation of plasma cholesterol levels as a ligand for apolipoprotein B-100 and apolipoprotein E (apoE). Consequently, LDLR-deficient mice fed a Western-type diet develop significant hypercholesterolemia and atherosclerosis. ApoE not only mediates uptake of atherogenic lipoproteins via the LDLR and other cell-surface receptors, but also directly inhibits atherosclerosis. In this study, we examined the hypothesis that coexpression of the LDLR and apoE would have greater effects than either one alone on plasma cholesterol levels and the development of atherosclerosis in LDLR-deficient mice. LDLR-deficient mice fed a Western-type diet for 10 weeks were injected with recombinant adenoviral vectors encoding the genes for human LDLR, human apoE3, both LDLR and apoE3, or lacZ (control). Plasma lipids were analyzed at several time points after vector injection. Six weeks after injection, mice were analyzed for extent of atherosclerosis by two independent methods. As expected, LDLR expression alone induced a significant reduction in plasma cholesterol due to reduced VLDL and LDL cholesterol levels, whereas overexpression of apoE alone did not reduce plasma cholesterol levels. When the LDLR and apoE were coexpressed in this model, the effects on plasma cholesterol levels were no greater than with expression of the LDLR alone. However, coexpression did result in a substantial increase in large apoE-rich HDL particles. In addition, although the combination of cholesterol reduction and apoE expression significantly reduced atherosclerosis, its effects were no greater than with expression of the LDLR or apoE alone. In summary, in this LDLR-deficient mouse model fed a Western-type diet, there was no evidence of an additive effect of expression of the LDLR and apoE on cholesterol reduction or atherosclerosis.  相似文献   

3.
Hepatic lipase clears plasma cholesterol by lipolytic and nonlipolytic processing of lipoproteins. We hypothesized that the nonlipolytic processing (known as the bridging function) clears cholesterol by removing apoB-48- and apoB-100-containing lipoproteins by whole particle uptake. To test our hypotheses, we expressed catalytically inactive human HL (ciHL) in LDL receptor deficient "apoB-48-only" and "apoB-100-only" mice. Expression of ciHL in "apoB-48-only" mice reduced cholesterol by reducing LDL-C (by 54%, 46 +/- 6 vs. 19 +/- 8 mg/dl, P < 0.001). ApoB-48 was similarly reduced (by 60%). The similar reductions in LDL-C and apoB-48 indicate cholesterol removal by whole particle uptake. Expression of ciHL in "apoB-100-only" mice reduced cholesterol by reducing IDL-C (by 37%, 61 +/- 19 vs. 38 +/- 12 mg/dl, P < 0.003). Apo-B100 was also reduced (by 27%). The contribution of nutritional influences was examined with a high-fat diet challenge in the "apoB-100-only" background. On the high fat diet, ciHL reduced IDL-C (by 30%, 355 +/- 72 vs. 257 +/- 64 mg/dl, P < 0.04) but did not reduce apoB-100. The reduction in IDL-C in excess of apoB-100 suggests removal either by selective cholesteryl ester uptake, or by selective removal of larger, cholesteryl ester-enriched particles. Our results demonstrate that the bridging function removes apoB-48- and apoB-100-containing lipoproteins by whole particle uptake and other mechanisms.  相似文献   

4.
The effect of probucol on atheroma formation was evaluated using mouse models for atherosclerosis with different diet protocols. Dietary administration of probucol (0.5 %, wt/wt) for 12 weeks reduced total plasma cholesterol levels in both apolipoprotein E (apoE)-deficient mice fed a western diet and in low-density lipoprotein receptor (LDLR)-deficient mice fed a Paigen diet by 60 % and 30 % to 60 %, respectively. Probucol treatment also significantly reduced high-density lipoprotein (HDL) levels in apoE-deficient mice, but not in LDLR-deficient mice. Atherosclerotic plaques in the aortic sinus of probucol-treated apoE-deficient mice were two-fold larger than those in untreated apoE-deficient mice, while the lesions in probucol-treated LDLR-deficient mice were similar to those in untreated LDLR-deficient mice. A strong negative correlation between HDL cholesterol levels and lesion sizes at the aortic sinus was observed in apoE-deficient mice, but not in LDLR-deficient mice. Thus, in contrast to LDLR-deficient mice, probucol had a strong proatherogenic effect in the aortic sinus of apoE-deficient mice associated with the reduction of HDL levels in spite of the reduction of total plasma cholesterol levels. The varying effects of probucol on atherogenesis depend upon the portion of aorta and which animal model is evaluated, implicating that complex cellular events are involved in the effect of probucol.  相似文献   

5.
Paracrine cell-to-cell interactions are crucial events during atherogenesis, however, little is known on the role of gap junctional communication during this process. We recently demonstrated increased expression of Cx43 in intimal smooth muscle cells and in a subset of endothelial cells covering the shoulder of atherosclerotic plaques. The purpose of this study was to examine the role of Cx43 in the development of atherosclerosis in vivo. Atherosclerosis-susceptible LDL receptor-deficient (LDLR(-/-)) mice were intercrossed with mice heterozygous for Cx43 (Cx43(+/-) mice). Male mice with normal (Cx43(+/+)LDLR(-/-)) or reduced (Cx43(+/-)LDLR(-/-)) Cx43 level of 10 weeks old were fed a cholesterol-rich diet (1.25%) for 14 weeks. Both groups of mice showed similar increases in serum lipids and body weight. Interestingly, the progression of atherosclerosis was reduced by 50% (P < 0.01) in the thoraco-abdominal aorta and in the aortic roots of Cx43(+/-)LDLR(-/-) mice compared with Cx43(+/+)LDLR(-/-) littermate controls. In addition, atheroma in Cx43(+/-)LDLR(-/-) mice contained fewer inflammatory cells and exhibited thicker fibrous caps with more collagen and smooth muscle cells, important features associated, in human, with stable atherosclerotic lesions. Thus, reducing Cx43 expression in mice provides beneficial effects on both the progression and composition of the atherosclerotic lesions.  相似文献   

6.
To address the role of the noncatalytic ligand function of hepatic lipase (HL) in low density lipoprotein (LDL) receptor-mediated lipoprotein metabolism, we characterized transgenic mice lacking the LDL receptor (LDLR) that express either catalytically active (Ldlr(-/-)HL) or inactive (Ldlr(-/-)HL(S145G)) human HL on both chow and high fat diets and compared them with nontransgenic Ldlr(-/-) mice. In mice fed a chow diet, apolipoprotein (apo)B-containing lipoprotein levels were 40-60% lower in Ldlr(-/-)HL and Ldlr(-/-)HL(S145G) mice than in Ldlr(-/-) mice. This decrease was mainly reflected by decreased apoB-48 levels in the Ldlr(-/-)HL mice and by decreased apoB-100 levels in Ldlr(-/-) HL(S145G) mice. These findings indicate that HL can reduce apoB-100-containing lipoproteins through a noncatalytic ligand activity that is independent of the LDLR. Cholesterol enrichment of the apoB-containing lipoproteins induced by feeding Ldlr(-/-)HL and Ldlr(-/-)HL(S145G) mice a cholesterol-enriched high fat (Western) diet resulted in parallel decreases in both apoB-100 and apoB-48 levels, indicating that HL is particularly efficient at reducing cholesterol-enriched apoB-containing lipoproteins through both catalytic and noncatalytic mechanisms. These data suggest that the noncatalytic function of HL provides an alternate clearance pathway for apoB-100- and apoB-48-containing lipoproteins that is independent of the LDLR and that contributes to the clearance of high density lipoproteins.  相似文献   

7.
LDL receptor-deficient (LDLR(-/-)) mice exhibit mild hyperlipidemia on a chow diet but develop severe hyperlipidemia on a high fat diet. In this study, we investigated neointimal formation after removal of the endothelium when LDLR(-/-) mice were fed chow or a Western diet containing 42% fat, 0.15% cholesterol, and 19.5% casein. At 10 weeks of age, female mice underwent endothelial denudation of the left common carotid artery. Two weeks after injury, neointimal formation was barely detectable in the injured vessel when mice developed mild hyperlipidemia on the chow diet. In contrast, neointimal lesions were obvious when mice developed severe hyperlipidemia on the Western diet. Immunohistochemical and histological analyses demonstrated the presence of macrophage foam cells and smooth muscle cells in neointimal lesions. The injured artery also exhibited a significant increase in medial area on the Western diet. Plasma levels of MCP-1 and soluble VCAM-1 were significantly elevated by feeding of the Western diet. These data indicate that hyperlipidemia aggravates neointimal growth in LDLR(-/-) mice by promoting foam cell formation and inflammation.  相似文献   

8.
An inverse relationship has been reported between cancer risk and cholesterol level, prompting the hypothesis that hypercholesterolemia may be protective against cancer. We tested this hypothesis by evaluating the growth of Lewis lung carcinoma in three different murine models of hypercholesterolemia: Pluronic treated mice, apolipoprotein E (ApoE) deficient mice, and low density lipoprotein receptor (LDL-R) deficient mice. Only the accumulation of LDL-cholesterol in LDL-R deficient mice suppressed tumor growth. Accumulation of chylomicrons, very low density lipoproteins (VLDL), and cholesterol-enriched remnants in the Pluronic treated mice and ApoE deficient mice did not inhibit tumor growth, even though mice in all three models were equally hypercholesterolemic. Taken together, the experimental evidence from our studies indicate that high plasma cholesterol in the form of LDL-cholesterol could have a beneficial effect against cancer in vivo.  相似文献   

9.
Cathepsin G (CatG), a serine protease present in mast cells and neutrophils, can produce angiotensin-II (Ang-II) and degrade elastin. Here we demonstrate increased CatG expression in smooth muscle cells (SMCs), endothelial cells (ECs), macrophages, and T cells from human atherosclerotic lesions. In low-density lipoprotein (LDL) receptor-deficient (Ldlr–/–) mice, the absence of CatG reduces arterial wall elastin degradation and attenuates early atherosclerosis when mice consume a Western diet for 3 months. When mice consume this diet for 6 months, however, CatG deficiency exacerbates atherosclerosis in aortic arch without affecting lesion inflammatory cell content or extracellular matrix accumulation, but raises plasma total cholesterol and LDL levels without affecting high-density lipoprotein (HDL) or triglyceride levels. Patients with atherosclerosis also have significantly reduced plasma CatG levels that correlate inversely with total cholesterol (r = –0.535, P < 0.0001) and LDL cholesterol (r = –0.559, P < 0.0001), but not with HDL cholesterol (P = 0.901) or triglycerides (P = 0.186). Such inverse correlations with total cholesterol (r = –0.504, P < 0.0001) and LDL cholesterol (r = –0.502, P < 0.0001) remain significant after adjusting for lipid lowering treatments among this patient population. Human CatG degrades purified human LDL, but not HDL. This study suggests that CatG promotes early atherogenesis through its elastinolytic activity, but suppresses late progression of atherosclerosis by degrading LDL without affecting HDL or triglycerides.  相似文献   

10.
Common and rare gene variants affecting plasma LDL cholesterol   总被引:1,自引:0,他引:1       下载免费PDF全文
The plasma level of LDL cholesterol is clinically important and genetically complex. LDL cholesterol levels are in large part determined by the activity of LDL receptors (LDLR) in the liver. Autosomal dominant familial hypercholesterolaemia (FH) - with its high LDL cholesterol levels, xanthomas, and premature atherosclerosis - is caused by mutations in either the LDLR or in APOB - the protein in LDL recognised by the LDLR. A third, rare form - autosomal recessive hypercholesterolaemia - arises from mutations in the gene encoding an adaptor protein involved in the internalisation of the LDLR. A fourth variant of inherited hypercholesterolaemia was recently found to be associated with missense mutations in PCSK9, which encodes a serine protease that degrades LDLR. Whereas the gain-of-function mutations in PCSK9 are rare, a spectrum of more frequent loss-of-function mutations in PCSK9 associated with low LDL cholesterol levels has been identified in selected populations and could protect against coronary heart disease. Heterozygous familial hypobetalipoproteinaemia (FHBL) - with its low LDL cholesterol levels and resistance to atherosclerosis - is caused by mutations in APOB. In contrast to other inherited forms of severe hypocholesterolaemia such as abetalipoproteinaemia - caused by mutations in MTP - and homozygous FHBL, a deficiency of PCSK9 appears to be benign. Rare variants of NPC1L1, the gene encoding the putative intestinal cholesterol receptor, have shown more modest effects on plasma LDL cholesterol than PCSK9 variants, similar in magnitude to the effect of common APOE variants. Taken together, these findings indicate that heritable variation in plasma LDL cholesterol is conferred by sequence variation in various loci, with a small number of common and multiple rare gene variants contributing to the phenotype.  相似文献   

11.
12.
Systolic blood pressure and plasma cholesterol levels were determined in male mice from lines genetically selected either for high and low systolic blood pressure or for high and low plasma cholesterol. No association was found between the two characteristics in these lines.  相似文献   

13.
The pituitary is important in the control of lipid metabolism and studies of hypophysectomized (Hx) rats have shown strong effects of growth hormone (GH) on bile acid synthesis, hepatic LDL receptor (LDLR) expression and on the sensitivity to dietary cholesterol. It is unclear if mice may be used in such studies. The aim of the current study was to evaluate if Hx mice may be used to further explore how GH modulates cholesterol and bile acid metabolism, and to define the importance of the LDLR in this regulation by studying LDLR-deficient mice (LDLRko). Experiments on three mouse strains showed that, following Hx, HDL were reduced and LDL increased. Cholesterol/fat feeding of Hx mice increased serum cholesterol levels 2- to 3-fold. Serum triglycerides were reduced 50% in Hx mice; a further 30% reduction was seen after dietary cholesterol/fat. A serum marker for CYP7A1-mediated bile acid synthesis (C4) increased 2-fold in intact mice on cholesterol/fat diet. In Hx mice C4 levels were reduced by 50% as compared to intact controls, but were unexpectedly increased to levels seen in normal mice upon cholesterol/fat feeding. Hx of LDLRko mice moderately increased LDL-cholesterol and reduced triglycerides and GH treatment attenuated these effects; serum C4 levels were increased by GH treatment in all groups. In conclusion, mice can be used to explore the role of the pituitary in lipid metabolism. CYP7A1 is generally reduced in Hx mice but has a normal stimulatory response following dietary cholesterol suggesting that faulty regulation of CYP7A1 is not important for the reduced resistance to dietary cholesterol in Hx mice. Further, the LDLR is only to a minor part involved in the pituitary regulation of serum cholesterol in mice.  相似文献   

14.
The hypothesis that adenosine acting on adenosine A1 receptors (A1R) regulates several renal functions and mediates tubuloglomerular feedback (TGF) was examined using A1R knockout mice. We anesthetized knockout, wild-type, and heterozygous mice and measured glomerular filtration rate, TGF response using the stop-flow pressure (P(sf)) technique, and plasma renin concentration. The A1R knockout mice had an increased blood pressure compared with wild-type and heterozygote mice. Glomerular filtration rate was similar in all genotypes. Proximal tubular P(sf) was decreased from 36.7 +/- 1.2 to 25.3 +/- 1.6 mmHg in the A1R+/+ mice and from 38.1 +/- 1.0 to 27.4 +/- 1.1 mmHg in A1R+/- mice in response to an increase in tubular flow rate from 0 to 35 nl/min. This response was abolished in the homozygous A1R-/- mice (from 39.1 +/- 4.1 to 39.2 +/- 4.5 mmHg). Plasma renin activity was significantly greater in the A1R knockout mice [74.2 +/- 14.3 milli-Goldblatt units (mGU)/ml] mice compared with the wild-type and A1R+/- mice (36.3 +/- 8.5 and 34.1 +/- 9.6 mGU/ml), respectively. The results demonstrate that adenosine acting on A1R is required for TGF and modulates renin release.  相似文献   

15.
Kim HJ  Oh GT  Park YB  Lee MK  Seo HJ  Choi MS 《Life sciences》2004,74(13):1621-1634
The purpose of the current study was to evaluate the lipid lowering and antioxidant capacity of naringin in LDL receptor knockout (LDLR-KO) mice fed a cholesterol (0.1 g/100 g) diet. As such, naringin or lovastatin (0.02 g/100 g) was supplemented in a cholesterol diet for 6 weeks. The naringin and lovastatin supplementation significantly lowered the plasma total cholesterol level compared to the control group. The plasma and hepatic triglyceride level was only lowered by the lovastatin supplement, while the hepatic cholesterol content was lowered by both the naringin and lovastatin supplements compared to the control group. The hepatic HMG-CoA reductase activity was significantly lower in the naringin and lovastatin supplemented groups than in the control group, whereas the ACAT activity was unaffected. The excretion of total sterol was significantly higher in the naringin and lovastatin groups compared to the control group due to significant changes in the acidic and neutral sterol, respectively. When comparing the hepatic antioxidant enzyme activities, the superoxide dismutase, catalase, and glutathione reductase activities were all significantly higher in the naringin-supplemented group than in the control group, while only the lovastatin supplement increased the glutathione reductase activity. Accordingly, the current results confirmed that naringin lowers the plasma cholesterol level via the inhibition of hepatic HMG-CoA reductase activity and increases the excretion of fecal sterol. Naringin was also found to improve the activities of hepatic antioxidant enzymes against oxidative stress in a hypercholesterolemic animal model, i.e. cholesterol-fed LDLR-KO mice.  相似文献   

16.
Liver X receptors (LXR alpha and LXR beta) are nuclear receptors, which are important regulators of cholesterol and lipid metabolism. LXRs control genes involved in cholesterol efflux in macrophages, bile acid synthesis in liver and intestinal cholesterol absorption. LXRs also regulate genes participating in lipogenesis. To determine whether the activation of LXR promotes or inhibits development of atherosclerosis, T-0901317, a synthetic LXR ligand, was administered to low density lipoprotein receptor (LDLR)(-/-) mice. T-0901317 significantly reduced the atherosclerotic lesions in LDLR(-/-) mice without affecting plasma total cholesterol levels. This anti-atherogenic effect correlated with the plasma concentration of T-0901317, but not with high density lipoprotein cholesterol, which was increased by T-0901317. In addition, we observed that T-0901317 increased expression of ATP binding cassette A1 in the lesions in LDLR(-/-) mice as well as in mouse peritoneal macrophages. T-0901317 also significantly induced cholesterol efflux activity in peritoneal macrophages. These results suggest that LXR ligands may be useful therapeutic agents for the treatment of atherosclerosis.  相似文献   

17.
It has been shown that adenovirus-mediated overexpression of human ApoAV (hApoAV) in C57BL/6 mice results in decreased plasma triglyceride (TG) and total cholesterol (TC) levels with a major reduction occurring in the HDL fraction. In order to study the effect of ApoAV on hypercholesterolemic mice, an adenoviral vector expressing hApoAV was constructed and injected into ApoE deficient mice. High levels of hApoAV mRNA in the liver and ApoAV proteins in the liver and plasma were detected. The treatment reduced plasma TG levels by 50% and 75%, and TC levels by 45% and 58% at day 3 and 7, respectively, after treatment as compared with a control group treated with Ad-hAP (human alkaline phosphatase). Plasma HDL-C levels remained unaltered, which were different from normolipidemic mice. These findings suggest that ApoAV might serve as a therapeutic agent for hyperlipidemic disorder.  相似文献   

18.
Prolactin (PRL) is the primary lactogenic pituitary hormone that plays an essential role in many aspects of reproduction, from fertilization to mammary gland development and maternal behavior. PRL has also been reported to play a role in immunoregulation. Because initial observations indicated that hypophysectomized rats present abnormalities of the immune system, including increased thymic atrophy and lymphopenia, a number of studies have focused on the potential immunomodulatory roles of PRL. This hormone exerts its biological activities following binding to specific cell surface PRL receptors (PRLRs). In this report, we have characterized the development and function of the immune system in PRLR-deficient mice. Compared with wild-type control mice, PRLR-/- mice demonstrate no alterations in thymic or splenic cellularity or in the composition of the lymphocyte subsets present in primary (bone marrow and thymus) or secondary (spleen and lymph nodes) lymphoid organs. Lymphocytes from PRLR-/- mice are functional in vitro, as they can proliferate normally to mitogens, cytokines, and allogeneic cells. PRLR-/- splenocytes display normal NK-mediated cytotoxicity to YAC-1 target cells. In vivo studies have revealed that PRLR-/- mice are able to 1) generate normal steady-state Ig levels, 2) mount a normal specific Ig response following immunization with a T-dependent Ag, 3) eliminate injected allogeneic tumor cells, and 4) effectively control Listeria monocytogenes infection. Taken together, these results show that immune system development and function proceed normally in the absence of PRL-mediated signaling and suggest that PRLR pathways are not essential for immunomodulation in vivo.  相似文献   

19.
20.
Epidemiological studies have revealed that stressful changes in social environment increase the risk of cardiovascular mortality. In this study, the influence of major negative and positive life changes on serum cholesterol was examined in middle-aged men to determine a possible biochemical link between life changes and cardiovascular mortality. The results showed no influence of negative life changes on serum cholesterols. However, positive life changes significantly predicted a reduction in total and LDL (low-density lipoprotein) cholesterol levels after adjustment for the baseline cardiovascular health status, baseline cholesterol level, diet, body mass index, waist-to-hip ratio and cardiorespiratory fitness. The odds ratio for lowering LDL cholesterol was 5.2 in the men reporting positive events compared with those reporting none. The findings suggest a predictive value of positive life changes for atherogenic lipid profile in middle-aged men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号