首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. Monoclonal antibodies that react with the circumsporozoite protein of the avian malaria Plasmodium gallinaceum sporozoites also reacted with circumsporozoite protein of the rodent malaria Plasmodium berghei. Two types of reactivity were identified: 1) two monoclonal antibodies reacted with P. berghei sporozoite protein by enzyme-linked immunosorbent assay, Western blot and indirect immunofluorescence antibody, 2) six other monoclonal antibodies reacted with P. berghei sporozoites by ELISA and Western blot only. We studied whether these differences could be explained by reactivity in enzyme-linked immunosorbent assay with different P. berghei circumsporozoite peptides. Although all P. gallinaceum monoclonal antibodies reacted with the P. berghei repeats, the first group reacted with a conserved peptide sequence, N1, whereas the second group did not. These results suggest that circumsporozoite proteins from P. gallinaceum and P. berghei share common epitopes. the biological significance of our finding is not yet clear. Indeed, the cross-reactive monoclonal antibodies giving a positive indirect immunofluorescence antibody with the P. berghei sporozoites only caused a borderline effect on the living P. berghei parasites in vitro as measured by inhibition of sporozoite infectivity.  相似文献   

2.
An IgM monoclonal antibody (Mab 36) which reacts with the circumsporozoite (CS) proteins of both P. falciparum and P. berghei was isolated from Plasmodium falciparum sporozoite-immunized mice. In assays of biological activity, Mab 36 induces the CS precipitation reaction with live sporozoites and blocks the invasion of hepatoma cells by sporozoites in vitro at concentrations much lower than those observed for previously reported CS protein-specific monoclonal antibodies. Mab 36 also provided complete protection against P. berghei sporozoite challenge in mice at low doses. Linear epitope mapping revealed that the epitope specificities recognized by Mab 36 are completely encompassed by other monoclonals previously shown to be associated in vivo with protection against P. falciparum or P. berghei sporozoite infection. These results suggest that the ability to make high-affinity IgM antibody to specific CS protein repeat epitopes may be important for eliciting protection against malarial infection.  相似文献   

3.
We demonstrate for the first time the presence of a circumsporozoite (CS)-like protein in invasive blood stages of malaria parasites. Immunogold electron microscopy using antisporozoite monoclonal antibodies localized these antigens in the micronemes of merozoites. Western immunoblot and two-dimensional gel electrophoresis of mature blood stage extracts of Plasmodium falciparum, P. berghei, P. cynomolgi, and P. brasilianum identified polypeptides having the same apparent molecular mass and isoelectric points as the corresponding sporozoite (CS) proteins. The CS-like protein of merozoites is present in relatively minor amounts, compared to the CS protein of sporozoites. Mice with long-term P. berghei blood-induced infections develop antibodies which react with sporozoites.  相似文献   

4.
Four Plasmodium species cause malaria in humans, Plasmodium falciparum being the most widely studied to date. All Plasmodium species have paired club-shaped organelles towards their apical extreme named rhoptries that contain many lipids and proteins which are released during target cell invasion. P. falciparum RhopH3 is a rhoptry protein triggering important immune responses in patients from endemic regions. It has also been shown that anti-RhopH3 antibodies inhibit in vitro invasion of erythrocytes. Recent immunisation studies in mice with the Plasmodium yoelii and Plasmodium berghei RhopH3 P. falciparum homologue proteins found that they are able to induce protection in murine models. This study described identifying and characterising RhopH3 protein in Plasmodium vivax; it is encoded by a seven exon gene and expressed during the parasite's asexual stage. PvRhopH3 has similar processing to its homologue in P. falciparum and presents a cellular immunolocalisation pattern characteristic of rhoptry proteins.  相似文献   

5.
ABSTRACT. Using fluorogenic substrates and polyacrylamide gels we detected in cell-free extracts of Plasmodium falciparum, Plasmodium chabaudi chabaudi and Plasmodium berghei only a single aminopeptidase. A comparative study of the aminopeptidase activity in each extract revealed that the enzymes have similar specificities and kinetics, a near-neutral pH optima of 7.2 and are moderately thermophilic. Each has an apparent molecular weight of 80,000 ± 10,000, determined by high performance liquid chromatography on a calibrated SW500 column. Whilst the P. c. chabaudi and P. berghei activity co-migrate in native polyacrylamide gels, that of P. falciparum migrates more slowly. The three enzymes can be selectively inhibited by ortho -phenanthroline and are thus metallo-aminopeptidases; however, in contrast to other aminopeptidases the metal co-factor does not appear to be Zn2+.  相似文献   

6.
Monoclonal antibodies were raised against a recombinant molecule corresponding to the polypeptide 72 kDa, previously described as possibly related to protection in Plasmodium falciparum infection. Selection of hybridoma cell lines was done by immunofluorescence to guarantee the reactivity of the monoclonal antibodies both against the recombinant and the native molecule of the parasite. Monoclonal antibodies were characterized by serological and immunochemical techniques. Competitive binding assays between monoclonal antibodies defined four different B epitopes. One epitope is specific for P. falciparum, a second is also present in P. vivax, while the two others seem to be ubiquitous and are also present in the rodent parasite P. chabaudi. The ubiquitous epitope 72.C is apparently the only one recognized by squirrel monkey sera presenting protective antibodies against the asexual blood infection by P. falciparum.  相似文献   

7.
The molecular karyotypes of P. chabaudi and P. falciparum have been compared by pulse field gradient electrophoresis. P. chabaudi has 3 extra chromosomes in the 750-2000 Kb range although the overall number appears to be 14 as is the case for P. falciparum. The chromosomal location of the rRNA genes has been determined for P. chabaudi together with that of a 24 Kd antigen gene. The corresponding cDNA 443 may code for a protein unusually rich in tyrosine and contains sequences highly repetitive in P. falciparum.  相似文献   

8.
The localization in the erythrocyte membrane of Pch105/RESA, the ring stage-infected erythrocyte surface antigen of Plasmodium chabaudi, the proposed analog to the vaccine candidate Pf155/RESA in P. falciparum, is here confirmed by the use of the immunogold technique in electron microscopy. Furthermore, a number of monoclonal antibodies to other P. chabaudi erythrocyte membrane antigens in the same molecular weight range as Pch105 were compared in different test systems. Data from immunoblotting of native and recombinant antigen as well as an inhibition ELISA indicate that Pch105 is identical to Pc96 and two other described antigens of 105 and 110 kDa. Pch105 could also be shown to have polymorphic epitopes, varying between different strains of P. chabaudi, without impact on the molecular weight.  相似文献   

9.
A panel of ten monoclonal antibodies made against Plasmodium chabaudi and Plasmodium yoelii infected mouse erythrocytes were used for characterization of antigens present in murine malaria. Screening of the antibodies in ELISA with different fractions of infected erythrocytes revealed both species-specific and fraction-specific monoclonal antibodies (MAbs), but also MAbs cross-reacting between the species. Two MAbs bound normal erythrocyte components. Subcellular localization of the target antigens was studied by immunofluorescence and their molecular identity by immunoblotting after SDS-PAGE. Of the MAbs to P. yoelii, one reacted with a cytoplasmic granule component of 137 k and two others reacted with vacuole-associated antigens of 26 k and 25/70/73 k, respectively. The latter antibodies cross-reacted with P. chabaudi antigens. Of the MAbs to P. chabaudi, all were species specific, one reacting with parasite surface antigens of 79 and 250 k and two with a vacuole-associated antigen of 70 k.  相似文献   

10.
R Carter 《Parasitology》1978,76(3):241-267
Electrophoretic variation of the enzymes glucose phosphate isomerase, 6-phosphogluconate dehydrogenase, lactate dehydrogenase and glutamate dehydrogenase (NADP-dependent) has been studied in the African murine malaria parasites Plasmodium berghei, P. yoelii, P. vinckei and P. chabaudi and their subspecies. Horizontal starch gel electrophoresis was used throughout. The number of isolates examined in each subspecies varied from 1 (P. y. nigeriensis) to 24 (P. c. chabaudi). Extensive enzyme variation was found among isolates of most of the subspecies from which more than two such isolates were available for study. It is clear that the phenomenon of enzyme polymorphism is of common occurrence among malaria parasites. With the exception of P. berghei and P. yoelii, of which all isolates share an identical electrophoretic form of lactate dehydrogenase, no enzyme forms are shared between any of the 4 species of murine plasmodia. By contrast, within each species common enzyme forms are shared among each of the subspecies. The subspecies are nevertheless, distinguished from each other by the electrophoretic forms of at least one enzyme. The distribution and reassortment of enzyme variation among isolates of a single subspecies is in accordance with the concept of malaria parasites as sexually reproducing organisms. The study of variation among parasites present in individual wild-caught rodent hosts demonstrates that natural malarial infections usually comprise genetically heterogeneous populations of parasites. Nevertheless, the number of genetically distinct types of parasite of any one species present in a single infected host appears to be small. Generally not more than 2 or 3 clones of parasite of distinct genetic constitution are present in a single infected animal.  相似文献   

11.
A Plasmodium falciparum protein of 130,000 molecular weight (m.w.) has been identified, cloned in Escherichia coli, and completely sequenced (Kochan et al. 1986). The protein appeared to bind to soluble glycophorin, a host erythrocyte surface protein. In the present study, extracts of parasites from different intraerythrocytic stages were immunoblotted with antibodies, raised against a 30,000 m.w. fusion protein corresponding to the 3' end of the 130,000 m.w. protein. It was demonstrated that the protein is synthesized at the trophozoite stage, accumulates at the schizont stage, and is processed at the merozoite stage to a triplet of three polypeptides. The processed proteins are present in the culture supernatant at the time of merozoite burst from the red cell. Immunofluorescent staining of the parasite at different intracellular stages indicates that the protein is localized on the parasite at the trophozoite stage. At late trophozoite stage, it appears to be transported to the erythrocyte cytoplasm, where it is present in small vesicles or inclusions. In mature schizonts the protein accumulates around the plasma membrane of the erythrocyte. At the segmenter stage, just prior to merozoite release, it appears also to surround the intracellular merozoite, as well as the erythrocyte plasma membrane. The soluble 130,000 m.w. protein binds to erythrocytes but binds significantly greater to erythrocyte membranes, suggesting it binds to an internal domain of glycophorin rather than the domain exposed on the surface. The 130,000 m.w. protein is present in 11 different geographic isolates of P. falciparum from diverse geographic origins. Its molecular weight is similar in all isolates.  相似文献   

12.
The 110 kDa/Rhop-3 rhoptry protein of Plasmodium falciparum is non-covalently associated with two other proteins, the 140 kDa Rhop-1 and the 130 kDa Rhop-2. cDNAs encoding Rhop-3 from Plasmodium yoelii were isolated using rhoptry-specific antisera from Plasmodium falciparum, P. yoelii, and Plasmodium chabaudi. The cDNAs encoded peptides with partial homology to the C-terminal region (residues 541-861) of P. falciparum Rhop-3. Core regions of homology to the P. falciparum gene will be useful in determining the biological role of Rhop-3 and its potential as a vaccine candidate for malaria.  相似文献   

13.
14.
15.
Immunization with extracellular sexual stages of the malaria parasites can induce the production of antibodies which block the development of the parasites in the midgut of a mosquito after a blood meal. We have generated a number of monoclonal antibodies against gametes and zygotes of the human malaria Plasmodium falciparum. Two monoclonal antibodies (mAb) reacting with a 230-kDa gamete surface protein (mAb 1B3 and 2B4 both isotype IgG2a) were found to block transmission of P. falciparum to mosquitoes. Blocking was complement dependent and this was verified in vitro by the rapid lysis of newly formed gametes and zygotes in the presence of the mAb and active complement. Both mAb reacted by immunofluorescence with the surface of gametes and zygotes from isolates of P. falciparum from various geographical areas. Each mAb immunoprecipitated a 230-kDa protein from 125I-labeled surface proteins of newly formed gametes and zygotes and immunoblotted a protein doublet of about molecular mass 260 and 230 kDa from gametocytes and gametes of P. falciparum. Only the 230-kDa protein is expressed on the surface of newly formed macrogametes and zygotes. The 230-kDa gamete surface protein forms a molecular complex with two proteins of 48 and 45 kDa. The 48- and 45-kDa gamete surface proteins have previously been shown to be targets of mAb which block infectivity of P. falciparum to mosquitoes. The present study now demonstrates that antibodies against the 230-kDa gamete surface protein block transmission of P. falciparum to mosquitoes. The 230-kDa gamete protein is thus a potential candidate for a gamete vaccine.  相似文献   

16.
1. DNA from various rodent Plasmodium species and strains and from P. falciparum, the human parasite, were analysed by agarose gel electrophoresis following digestion with restriction endonucleases EcoRI, Hind III and Bam Hl. Complex patterns of ethidium-stained bands were obtained, which showed similarity but reproducible differences among the various parasite species (P. chabaudi, P. yoelii, P. berghei and P. falciparum). 2. No differences could be discerned among two cloned strains of P. yoelii (33X, and YM) and among pyrimethamine-resistant (pyrimethamine + chloroquine)-resistant and the drug-sensitive P. chabaudi clone from which the resistant clones were derived. 3. From the known complexity of Plasmodium DNA it could be concluded that the visible bands were derived from repetitive DNA fractions.  相似文献   

17.
Monoclonal antibodies recognizing various facets of the malaria parasite Plasmodium berghei and of the infected erythrocyte were obtained after generation of hybridomas between spleen cells from immunized mice and myeloma cells. The monoclonal antibodies were characterized by enzyme-linked immunosorbent assay, indirect immunofluorescence, immunoprecipitation of [35S]methionine-labeled proteins and immunoblotting. The most readily identified antigen was a parasite surface-associated protein of 230 kDa which is similar to the polymorphic schizont antigen described in a number of malarial species. In addition, three distinct antigens of 13, 31 and 120 kDa, which are external to the parasite, but within the infected erythrocyte were identified.  相似文献   

18.
Comparison of the malaria parasite and mammalian protein prenyltransferases and their cellular substrates is important for establishing this enzyme as a target for developing antimalarial agents. Nineteen heptapeptides differing only in their carboxyl-terminal amino acid were tested as alternative substrates of partially purified Plasmodium falciparum protein farnesyltransferase. Only NRSCAIM and NRSCAIQ serve as substrates, with NRSCAIM being the best. Peptidomimetics, FTI-276 and GGTI-287, inhibit the transferase with IC(50) values of 1 and 32 nm, respectively. Incubation of P. falciparum-infected erythrocytes with [(3)H]farnesol labels 50- and 22-28-kDa proteins, whereas [(3)H]geranylgeraniol labels only 22-28-kDa proteins. The 50-kDa protein is shown to be farnesylated, whereas the 22-28-kDa proteins are geranylgeranylated, irrespective of the labeling prenol. Protein labeling is inhibited more than 50% by either 5 microm FTI-277 or GGTI-298. The same concentration of inhibitors also inhibits parasite growth from the ring stage by 50%, decreases expression of prenylated proteins as measured with prenyl-specific antibody, and inhibits parasite differentiation beyond the trophozoite stage. Furthermore, differentiation specific prenylation of P. falciparum proteins is demonstrated. Protein labeling is detected predominantly during the trophozoite to schizont and schizont to ring transitions. These results demonstrate unique properties of protein prenylation in P. falciparum: a limited specificity of the farnesyltransferase for peptide substrates compared with mammalian enzymes, the ability to use farnesol to label both farnesyl and geranylgeranyl moieties on proteins, differentiation specific protein prenylation, and the ability of peptidomimetic prenyltransferase inhibitors to block parasite differentiation.  相似文献   

19.
Plasmodium falciparum (P. falciparum) secretes hundreds of proteins--including major virulence proteins--into the host erythrocyte. In order to reach the host cytoplasm, most P. falciparum proteins contain an N terminal host-targeting (HT) motif composed of 11 amino acids. In silico analyses have suggested that the HT motif is conserved throughout the Plasmodium species but experimental evidence only exists for P. falciparum. Here, we show that in the rodent malaria parasite Plasmodium berghei (P. berghei) a reporter-like green fluorescent protein expressed by the parasite can be exported to the erythrocyte cytoplasm in a HT-specific manner. This provides the first experimental proof that the HT motif can function as a signal for protein delivery to the erythrocyte across Plasmodium species. Further, it suggests that P. berghei may serve as a model for validation of P. falciparum secretome proteins. We also show that tubovesicular membranes extend from the vacuolar parasite into the erythrocyte cytoplasm and speculate that these structures may facilitate protein export to the erythrocyte.  相似文献   

20.
1. The membrane fraction, prepared by hypotonic lysis, of mouse red cells infected with Plasmodium berghei, P. yoelii YM, P. yoelii 17 X, P. yoelii 33 X, P. vinckei or P. chabaudi shows significant alterations from normal in protein composition as observed by dodecylsulphate-polyacrylamide gel electrophoresis. 2. There is a reduction in intensity of various protein bands, notably bands I and II (spectrin), of membranes prepared from infected red cells. 3. New bands are observed as a result of infection, the intensity and location of which depend on the parasite species and strain. A new band of apparent molecular weight 150,000 appears with a strong intensity in P. yoelii YM infection, with a moderate intensity in P. berghei infection, and with a weak intensity in P. vinckei and P. chabaudi infection. In P. yoelii 17X and 33X infection, multiple weak bands are seen in the molecular weight range 120,000-210,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号