首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
《The Journal of cell biology》1996,134(4):1063-1073
Leukocyte emigration possibly requires dynamic regulation of integrin adhesiveness for endothelial and extracellular matrix ligands. Adhesion assays on purified vascular cell adhension molecule (VCAM)-1, fibronectin, and fibronectin fragments revealed distinct kinetic patterns for the regulation of very late antigen (VLA)-4 (alpha 4 beta 1) and VLA-5 (alpha 5 beta 1) avidity by the CC chemokines monocyte inflammatory protein (MIP)-1 alpha, RANTES (regulated on activation, normal T expressed and secreted), or monocyte chemoattractant protein (MCP)-1 in monocytes. CC chemokines induced early activation and subsequent deactivation of VLA-4, whereas upregulation of VLA-5 avidity occurred later and persisted. Controlled detachment assays in shear flow suggested that adhesive strength of VLA-4 for VCAM-1 or the 40-kD fragment of fibronectin (FN40) is more rapidly increased and subsequently reduced by MCP-1 than by MIP-1 alpha, and confirmed late and sustained activation of the adhesive strength of VLA-5 for the 120- kD fragment of fibronectin (FN120). Mn2+ or the stimulating beta 1 mAb TS2/16 strongly and stably enhanced monocyte binding to VCAM-1 or fibronectin, and locked beta 1 integrins in a high avidity state, which was not further modulated by CC chemokines. Mn2+ and mAb TS2/16 inhibited CC chemokine-induced transendothelial migration, particularly chemotaxis across stimulated endothelium that involved VLA-4 and VCAM- 1. VLA-4 on Jurkat cells is of constitutively high avidity and interfered with migration across barriers expressing VCAM-1. Low but not high site densities of VCAM-1 or FN40 promoted, while FN120 impaired, beta 1 integrin-dependent monocyte chemotaxis to MCP-1 across filters coated with these substrates. Thus, we show that CC chemokines can differentially and selectively regulate avidity of integrins sharing common beta subunits. Transient activation and deactivation of VLA-4 may serve to facilitate transendothelial diapedesis, whereas late and prolonged activation of VLA-5 may mediate subsequent interactions with the basement membrane and extracellular matrix.  相似文献   

2.
Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1alpha, while it did not affect RANTES, MIP-1beta and MIP-3beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host.  相似文献   

3.
Chemokines are a group of small proteins that have a variety of functions, including the activation and recruitment of immune cells during episodes of inflammation. In common with many cytokines, it has been observed that chemokines have the potential to bind heparin-like glycosaminoglycan molecules, which are normally expressed on proteoglycan components of the cell surface and extracellular matrix. The significance of this interaction for chemokine activity remains a subject of debate. In this study, Chinese hamster ovary cells were transfected separately with the human chemokine receptors CCR1 and CCR5, and these receptors were shown to induce an intracytoplasmic Ca(2+) flux and cellular chemotaxis following stimulation with the natural CC chemokine ligands (MIP-1alpha, RANTES (regulated on activation normal T cell expressed), and MIP-1beta). In further experiments, mutant CHO cells, with a defect in normal glycosaminoglycan (GAG) expression, were also transfected with, and shown to express similar levels of, CCR1 and CCR5. Although these receptors were functional, it was found that the mutant cells required exposure to higher concentrations of ligands than the wild-type cells in order to produce the same intracytoplasmic Ca(2+) flux. Radioligand binding experiments demonstrated that specific chemokine receptors expressed by wild-type cells had a significantly greater affinity for MIP-1alpha than similar receptors expressed by GAG-deficient mutants. However, there was no significant difference between these cells in their affinity for RANTES or MIP-1beta. In conclusion, it has been demonstrated clearly that GAG expression is not necessary for the biological activity of the chemokines MIP-1alpha, RANTES, or MIP-1beta. However, the presence of cell surface GAGs does enhance the activity of low concentrations of these chemokines by a mechanism that appears to involve sequestration onto the cell surface.  相似文献   

4.
CCR5 is a functional receptor for various inflammatory CC-chemokines, including macrophage inflammatory protein (MIP)-1alpha and RANTES (regulated on activation normal T cell expressed and secreted), and is the main coreceptor of human immunodeficiency viruses. The second extracellular loop and amino-terminal domain of CCR5 are critical for chemokine binding, whereas the transmembrane helix bundle is involved in receptor activation. Chemokine domains and residues important for CCR5 binding and/or activation have also been identified. However, the precise way by which chemokines interact with and activate CCR5 is presently unknown. In this study, we have compared the binding and functional properties of chemokine variants onto wild-type CCR5 and CCR5 point mutants. Several mutations in CCR5 extracellular domains (E172A, R168A, K191A, and D276A) strongly affected MIP-1alpha binding but had little effect on RANTES binding. However, a MIP/RANTES chimera, containing the MIP-1alpha N terminus and the RANTES core, bound to these mutants with an affinity similar to that of RANTES. Several CCR5 mutants affecting transmembrane helices 2 and 3 (L104F, L104F/F109H/F112Y, F85L/L104F) reduced the potency of MIP-1alpha by 10-100 fold with little effect on activation by RANTES. However, the MIP/RANTES chimera activated these mutants with a potency similar to that of MIP-1alpha. In contrast, LD78beta, a natural MIP-1alpha variant, which, like RANTES, contains a proline at position 2, activated these mutants as well as RANTES. Altogether, these results suggest that the core domains of MIP-1alpha and RANTES bind distinct residues in CCR5 extracellular domains, whereas the N terminus of chemokines mediates receptor activation by interacting with the transmembrane helix bundle.  相似文献   

5.
The presence of binding sites for the beta chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha (MIP-1alpha) has recently been identified on human brain microvessels. We extend these findings in this report to reveal that such sites exemplify characteristics of the recognized major receptors for MCP-1 and MIP-1alpha: CCR2, and CCR1 and CCR5, respectively. Specifically, labeled MCP-1 binding to isolated brain microvessels was inhibited by unlabeled MCP-1 and MCP-3, the latter another CCR2 ligand, but not by MIP-1alpha. Inhibition of labeled MIP-1alpha binding was achieved with unlabeled MIP-1alpha and RANTES, the latter a beta chemokine that binds to both CCR1 and CCR5, but not by MCP-1. Labeled MIP-1alpha binding was also antagonized by unlabeled MCP-3, which is also recognized by CCR1, and MIP-1beta, which is a ligand for CCR5. Labeled MCP-1 and MIP-1alpha were further observed to be internalized within the endothelial cells of brain microvessels, following their binding to the microvascular surface at 37 degrees C. Additionally, exposure of microvessels to unlabeled MCP-1 or MIP-1alpha was accompanied by the initial loss and subsequent recovery of surface binding sites for these chemokines, which occurred on a time scale consistent with ligand-induced endocytosis and recycling. These collective features bear striking similarity to those that characterize interactions of MCP-1 and MIP-1alpha with their receptors on leukocytes and underscore the concept of cognate chemokine receptors on brain microvascular endothelium.  相似文献   

6.
Peripheral blood lymphocytes express CCR5, a chemokine receptor for immune cell migration and calcium signaling that serves as an important coreceptor for the HIV. After in vitro stimulation, CCR5 expression is dramatically increased on mature T lymphocytes, especially on the CD45RO+ memory subset. In this study, we report that TNF-alpha delays the surface expression of CCR5 on PBLs after activation and diminishes CCR5 irrespective of its initial level. Functional loss of CCR5 is reflected in a decreased capability of the treated cells to migrate and signal calcium after MIP-1beta stimulation. The effect is mediated via the p80 type II TNF receptor (TNFR2), which induces NF-kappaB among other factors, leading to an enhanced secretion of the chemokines macrophage-inflammatory protein-1alpha, macrophage-inflammatory protein-1beta, and RANTES. Expression of these chemokines directly down-regulates CCR5. These findings reveal a new regulatory mechanism utilized by activated peripheral T cells to modulate their chemotaxis and potentially other functions mediated by CCR5, including the infection of T lymphocytes by macrophage-tropic HIV strains.  相似文献   

7.
8.
CCL3 (MIP-1alpha), a prototype of CC chemokines, is a potent chemoattractant toward human neutrophils pre-treated with GM-CSF for 15 min. GM-CSF-treated neutrophils migrate also to the selective CCR5 agonist CCL4 (MIP-1beta). CCL3- and CCL4-triggered migration of GM-CSF-primed neutrophils was inhibited by the CCR5 antagonist TAK-779. Accordingly, freshly isolated neutrophils express CCR5. Extracellular signal-regulated kinases (ERK)-1/2 and p38 mitogen-activated protein kinase (MAPK) inhibitors blocked CCL3-induced migration of GM-CSF-primed neutrophils. When the activation of ERK-1/2 and p38 MAPK by CCL3 and the classical neutrophilic chemokine CXCL8 (IL-8) were compared, both the chemokines were capable of activating p38 MAPK. On the contrary, whereas both ERK-1 and ERK-2 were activated by CXCL8, no ERK-1 band was detectable after CCL3 triggering. Finally, neutrophil pre-treatment with GM-CSF activated both ERK-1 and ERK-2. This suggests that by activating ERK-1, GM-CSF renders neutrophils rapidly responsive to CCL3 stimulation throughout CCR5 which is constitutively expressed on the cell surface.  相似文献   

9.
The CC-chemokines RANTES, macrophage inflammatory protein 1alpha (MIP-1alpha), and MIP-1beta are natural ligands for the CC-chemokine receptor CCR5. MIP-1alpha, also known as LD78alpha, has an isoform, LD78beta, which was identified as the product of a nonallelic gene. The two isoforms differ in only 3 amino acids. LD78beta was recently reported to be a much more potent CCR5 agonist than LD78alpha and RANTES in inducing intracellular Ca2+ signaling and chemotaxis. CCR5 is expressed by human monocytes/macrophages (M/M) and represents an important coreceptor for macrophage-tropic, CCR5-using (R5) human immunodeficiency virus type 1 (HIV-1) strains to infect the cells. We compared the antiviral activities of LD78beta and the other CC-chemokines in M/M. LD78beta at 100 ng/ml almost completely blocked HIV-1 replication, while at the same concentration LD78alpha had only weak antiviral activity. Moreover, when HIV-1 infection in M/M was monitored by a flow cytometric analysis using p24 antigen intracellular staining, LD78beta proved to be the most antivirally active of the chemokines. RANTES, once described as the most potent chemokine in inhibiting R5 HIV-1 infection, was found to be considerably less active than LD78beta. LD78beta strongly downregulated CCR5 expression in M/M, thereby explaining its potent antiviral activity.  相似文献   

10.
11.
Chemokines play diverse roles in inflammatory and non-inflammatory situations via activation of heptahelical G-protein-coupled receptors. Also, many chemokine receptors can act as cofactors for cellular entry of human immunodeficiency virus (HIV) in vitro. CCR5, a receptor for chemokines MIP-1alpha (LD78alpha), MIP-1beta, RANTES, and MCP2, is of particular importance in vivo as polymorphisms in this gene affect HIV infection and rate of progression to AIDS. Moreover, the CCR5 ligands can prevent HIV entry through this receptor and likely contribute to the control of HIV infection. Here we show that a non-allelic isoform of human MIP-1alpha (LD78alpha), termed LD78beta or MIP-1alphaP, has enhanced receptor binding affinities to CCR5 (approximately 6-fold) and the promiscuous beta-chemokine receptor, D6 (approximately 15-20-fold). We demonstrate that a proline residue at position 2 of MIP-1alphaP is responsible for this enhanced activity. Moreover, MIP-1alphaP is by far the most potent natural CCR5 agonist described to date, and importantly, displays markedly higher HIV1 suppressive activity than all other human MIP-1alpha isoforms examined. In addition, while RANTES has been described as the most potent inhibitor of CCR5-mediated HIV entry, MIP-1alphaP was as potent as, if not more potent than, RANTES in HIV-1 suppressive assays. This property suggests that MIP-1alphaP may be of importance in controlling viral spread in HIV-infected individuals.  相似文献   

12.
To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1alpha-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1alpha (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat-beta-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1beta (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1alpha. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1alpha, MIP-1beta, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors.  相似文献   

13.
To investigate eosinophil stimulation by chemokines we developed a sensitive assay of leukocyte shape change, the gated autofluorescence/forward scatter assay. Leukocyte shape change responses are mediated through rearrangements of the cellular cytoskeleton in a dynamic process typically resulting in a polarized cell and are essential to the processes of leukocyte migration from the microcirculation into sites of inflammation. We examined the actions of the chemokines eotaxin, eotaxin-2, monocyte chemoattractant protein-1 (MCP-1), MCP-3, MCP-4, RANTES, macrophage inflammatory protein-1alpha (MIP-1alpha), and IL-8 on leukocytes in mixed cell suspensions and focused on the responses of eosinophils to C-C chemokines. Those chemokines acting on CCR3 induced a rapid shape change in eosinophils from all donors; of these, eotaxin and eotaxin-2 were the most potent. Responses to MCP-4 were qualitatively different, showing marked reversal of shape change responses with agonist concentration and duration of treatment. In contrast, MIP-1alpha induced a potent response in eosinophils from a small and previously undescribed subgroup of donors via a non-CCR3 pathway likely to be CCR1 mediated. Incubation of leukocytes at 37 degrees C for 90 min in the absence of extracellular calcium up-regulated responses to MCP-4 and MIP-1alpha in the majority of donors, and there was a small increase in responses to eotaxin. MIP-1alpha responsiveness in vivo may therefore be a function of both CCR1 expression levels and the regulated efficiency of coupling to intracellular signaling pathways. The observed up-regulation of MIP-1alpha signaling via non-CCR3 pathways may play a role in eosinophil recruitment in inflammatory states such as occurs in the asthmatic lung.  相似文献   

14.
Keratinocyte growth factor (KGF) induction of keratinocyte attachment and migration on provisional and basement membrane proteins was examined. KGF-treated keratinocytes showed increased attachment to collagen types I and IV and fibronectin, but, not to laminin-1, vitronectin, or tenascin. This increase was time- and dose-dependent. Increase in attachment occurred with 2 10 microg/ml of ECM proteins. This KGF-stimulated cell attachment was beta1 integrin-dependent but was not associated with stimulation of the cell surface expression nor affinity (activity) of the collagen integrin receptor (alpha2beta1) nor the fibronectin integrin receptors (alpha5beta1 or alphav). At the basal layer of KGF-treated cells significant accumulation of beta1 integrins was found at the leading edges, and actin stress fibers colocalized with beta1. KGF also induced migratory phenotype and stimulated keratinocyte migration on both fibronectin and collagen types I and IV but not on laminin-1, vitronectin nor tenascin. The results suggest that in addition to its proliferation promoting activity. KGF is able to modulate keratinocyte adhesion and migration on collagen and fibronectin. Our data suggest that KGF induced integrin avidity (clustering), a signaling event, which is not dependent on the alteration of cell surface integrin numbers.  相似文献   

15.
Yang JY  Togni M  Widmer U 《Cytokine》1999,11(1):1-7
CC chemokine receptor 5 (CCR5) is a cell entry cofactor for macrophage-tropic isolates of human immunodeficiency virus 1 (HIV-1). An inactive CCR5 allele with a 32-nucleotide deletion (CCR5Delta32) has been described that confers resistance to HIV-1 infection in homozygotes and slows the rate of progression to AIDS in heterozygotes. We found the allele CCR5Delta32 to be not rare in 399 Swiss blood donors with a frequency of 0.080. To assess the influence of defective CCR5 on production of its ligands we determined the capacity to produce the chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES in comparison with the production of the CXC chemokine IL-8 which does not bind to CCR5. Production of chemokines was determined during endotoxin stimulation of whole-blood samples ex vivo. Both, basal and LPS-induced chemokine production in 32 blood donors heterozygous for CCR5Delta32 were not significantly different when compared with 55 blood donors who were homozygous for the wild type CCR5 allele.  相似文献   

16.
17.
Leukocyte recruitment is a key step in the inflammatory reaction. Several changes in the cell morphology take place during lymphocyte activation and migration: spheric-shaped resting T cells become polarized during activation, developing a well defined cytoplasmic projection designated as cellular uropod. We found that the chemotactic and proinflammatory chemokines RANTES, MCP-1, and, to a lower extent, MIP-1 alpha, MIP-1 beta, and IL-8, were able to induce uropod formation and ICAM-3 redistribution in T lymphoblasts adhered to ICAM-1 or VCAM- 1. A similar chemokine-mediated effect was observed during T cells binding to the fibronectin fragments of 38- and 80-kD, that contain the binding sites for the integrins VLA-4 and VLA-5, respectively. The uropod structure concentrated the ICAM-3 adhesion molecule (a ligand for LFA-1), and emerged to the outer milieu from the area of contact between lymphocyte and protein ligands. In addition, we found that other adhesion molecules such as ICAM-1, CD43, and CD44, also redistributed to the lymphocyte uropod upon RANTES stimulation, whereas a wide number of other cell surface receptors did not redistribute. Chemokines displayed a selective effect among different T cell subsets; MIP-1 beta had more potent action on CD8+ T cells and tumor infiltrating lymphocytes (TIL), whereas RANTES and MIP-1 alpha targeted selectively CD4+ T cells. We have also examined the involvement of cAMP signaling pathway in uropod formation. Interestingly, several cAMP agonists were able to induce uropod formation and ICAM-3 redistribution, whereas H-89, a specific inhibitor of the cAMP- dependent protein kinase, abrogated the chemokine-mediated uropod formation, thus pointing out a role for cAMP-dependent signaling in the development of this cytoplasmic projection. Since the lymphocyte uropod induced by chemokines was completely abrogated by Bordetella pertussis toxin, the formation of this membrane projection appears to be dependent on G proteins signaling pathways. In addition, the involvement of myosin-based cytoskeleton in uropod formation and ICAM-3 redistribution in response to chemokines was suggested by the prevention of this phenomenon with the myosin-disrupting agent butanedione monoxime. Interestingly, this agent also inhibited the ICAM- 3-mediated cell aggregation, but not the cell adhesion to substrata. Altogether, these results demonstrate that uropod formation and adhesion receptor redistribution is a novel function mediated by chemokines; this phenomenon may represent a mechanism that significantly contributes to the recruitment of circulating leukocytes to inflammatory foci.  相似文献   

18.
The C-C chemokines MIP-1alpha, MIP-1beta and RANTES are specific and powerful inhibitors of HIV infectivity. They appear to work by blocking the interaction of the virus with the receptor (CCR5). The latter is utilized as a coreceptor for cell penetration by macrophage-tropic (R5) HIV strains responsible for the majority of HIV transmissions. A natural high capability to release such chemokines has been proposed as a protection factor against HIV infection in exposed uninfected individuals. We report that oral administration of N-acetyl-cysteine (NAC) to healthy volunteers increases the capability of their peripheral blood mononuclear cells (PBMC) to release such anti HIV chemokines upon stimulation. The data reported may explain at least in part the mechanism of action of NAC as an anti HIV therapeutic agent: By potentiating chemokine production NAC may decrease susceptibility to infection.  相似文献   

19.
Intramuscular injection of synthetic oligodeoxynucleotides (ODN) expressing unmethylated CpG motifs trigger the rapid development of a local inflammatory response. In vitro studies demonstrate that macrophages exposed to CpG ODN up-regulate expression of mRNA encoding the chemokines MIP-1alpha, MIP-1beta, MIP-2, RANTES, JE/MCP-1, and IP-10. Within 6 h of in vivo administration, CpG ODN induce a significant increase in chemokine mRNA levels at the site of injection and draining lymph nodes. These chemokines may contribute to the migration and stimulation of inflammatory cells that contribute to the development of CpG ODN-induced immune responses.  相似文献   

20.
We examined the effect of TGF-beta 1 on the chemotactic migratory ability of human monocyte-derived dendritic cells (DCs). Treatment of immature DCs with TGF-beta 1 resulted in increased expressions of CCR-1, CCR-3, CCR-5, CCR-6, and CXC chemokine receptor-4 (CXCR-4), which were concomitant with enhanced chemotactic migratory responses to their ligands, RANTES (for CCR-1, CCR-3, and CCR-5), macrophage-inflammatory protein-3 alpha (MIP-3 alpha) (for CCR-6), or stromal cell-derived growth factor-1 alpha (for CXCR-4). Ligation by TNF-alpha resulted in down-modulation of cell surface expressions of CCR-1, CCR-3, CCR-5, CCR-6, and CXCR-4, and the chemotaxis for RANTES, MIP-3 alpha, and stromal cell-derived growth factor-1 alpha, whereas this stimulation up-regulated the expression of CCR-7 and the chemotactic ability for MIP-3beta. Stimulation of mature DCs with TGF-beta 1 also enhanced TNF-alpha-induced down-regulation of the expressions of CCR-1, CCR-3, CCR-5, CCR-6, and CXCR-4, and chemotaxis to their respective ligands, while this stimulation suppressed TNF-alpha-induced expression of CCR-7 and chemotactic migratory ability to MIP-3 beta. Our findings suggest that TGF-beta 1 reversibly regulates chemotaxis of DCs via regulation of chemokine receptor expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号