首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Effect of edema on the relationship between rate of fluid filtration and vascular pressure was studied in ventilated isolated dog lung lobes blood-perfused at constant flow. Constant rate of lobe weight gain (S), representing transvascular fluid flux, was obtained at different venous pressures (Pv) as Pv was increased stepwise from 2 to 40 and then similarly decreased from 40 to 2 Torr (n = 6). In another group (n = 6), edema was maximized by reversing the sequence of Pv change; S was obtained during similar Pv steps as Pv was decreased from 40 to 2 and then returned to 40 Torr. In both groups, delta S was disproportionately greater for delta Pv at higher Pv's, with S vs. Pv fit by an exponential curve (P less than 0.001). The exponential relationship was independent of lung hydration inasmuch as greater edema on the second limb of Pv change did not alter the curve (P greater than 0.05). At 144% weight gain, interstitial compliance was 55.5 +/- 26.8 ml.100 g-1.Torr-1 (n = 10). Interstitial pressure reportedly remains constant, i.e., fails to increase to further buffer fluid filtration, after transition of the lung interstitium from low to high compliance at approximately 40% lung weight gain. If so, then the exponential S vs. Pv relationship observed in the present study at elevated interstitial compliance does not appear related to tissue pressure-buffering effects.  相似文献   

3.
4.
5.
In six excised canine lungs, regional alveolar pressures (PA) were measured during small-amplitude high-frequency oscillations applied at the airway opening. Both the regional distribution of PA's and their relationship to pressure excursions at the airway opening (Pao) were assessed in terms of amplitude and phase. PA was sampled in several capsules glued to the pleural surface and communicating with alveolar gas via pleural punctures. Pao and PA were measured over the frequency (f) range 1-60 Hz, at transpulmonary pressures (PL) of 5, 10, and 25 cmH2O. The amplitude of PA excursions substantially exceeded Pao excursions at frequencies near the resonant frequency. At resonance the ratio [PA/Pao] was 1.9, 2.9, and 4.8 at PL's of 5, 10, and 25 cmH2O, respectively. Both spatial homogeneity and temporal synchrony of PA's between sampled lung regions decreased with f and increased with PL. Interregional variability of airway impedance [(Pao - PA)/Vao] and tissue impedance (PA/Vao) tended to be larger than differences due to changing PL but not as large as between-dog variability. These data define the baseline nonhomogeneity of the normal canine lung and also suggest that there may be some advantage in applying high-frequency ventilation at frequencies at least as high as lung resonant frequency.  相似文献   

6.
7.
We have previously shown (Am. Rev. Respir. Dis. 136: 886-891, 1987) improved cardiac output in dogs with pulmonary edema ventilated with external continuous negative chest pressure ventilation (CNPV) using negative end-expiratory pressure (NEEP), compared with continuous positive-pressure ventilation (CPPV) using equivalent positive end-expiratory pressure (PEEP). The present study examined the effect on lung water of CNPV compared with CPPV to determine whether the increased venous return created by NEEP worsened pulmonary edema in dogs with acute lung injury. Oleic acid (0.06 ml/kg) was administered to 27 anesthetized dogs. Supine animals were then divided into three groups and ventilated for 6 h. The first group (n = 10) was treated with intermittent positive-pressure ventilation (IPPV) alone; the second (n = 9) received CNPV with 10 cmH2O NEEP; the third (n = 8) received CPPV with 10 cmH2O PEEP. CNPV and CPPV produced similar improvements in oxygenation over IPPV. However, cardiac output was significantly depressed by CPPV, but not by CNPV, when compared with IPPV. Although there were no differences in extravascular lung water (Qwl/dQl) between CNPV and CPPV, both significantly increased Qwl/dQl compared with IPPV (7.81 +/- 0.21 and 7.87 +/- 0.31 vs. 6.71 +/- 0.25, respectively, P less than 0.01 in both instances). CNPV and CPPV, but not IPPV, enhanced lung water accumulation in the perihilar areas where interstitial pressures may be most negative at higher lung volumes.  相似文献   

8.
Lung inflation, lung solute permeability, and alveolar edema   总被引:7,自引:0,他引:7  
  相似文献   

9.
10.
To investigate the influence of positive end-expiratory pressure (PEEP) on hemodynamic measurements we examined the transmission of airway pressure to the pleural space during varying conditions of lung and chest wall compliance. Eight ventilated anesthetized dogs were studied in the supine position with the chest closed. Increases in pleural pressure were similar for both small and large PEEP increments (5-20 cmH2O), whether measured in the esophagus (Pes) or in the juxtacardiac space by a wafer sensor (Pj). Increments in Pj exceeded the increments in Pes at all levels of PEEP and under each condition of altered lung and chest wall compliance. When chest wall compliance was reduced by thoracic and abdominal binding, the fraction of PEEP sensed in the pleural space increased as theoretically predicted. Acute edematous lung injury produced by oleic acid (OA) did not alter the deflation limb pressure-volume characteristics of the lung, provided that end-inspiratory volume was adequate. With the chest and abdomen restricted OA was associated with less than normal transmission of airway pressure to the pleural space, most likely because the end-inspiratory volume required to restore normal deflation characteristics was not attained. Together these results indicate that the influence of acute edematous lung injury on the transmission of airway pressure to the pleural space depends importantly on the peak volume achieved during inspiration.  相似文献   

11.
Sequential changes in lung metabolism, permeability, and edema after ANTU   总被引:2,自引:0,他引:2  
Lung injury and pulmonary edema were induced in rats after intraperitoneal injection of 10 mg/kg alpha-naphthylthiourea (ANTU). The time course of development of lung injury was assessed by the clearance of 99mTc-diethylenetriamine pentaacetate (99mTcDTPA) from the lung into the blood, the pharmacokinetics of tritiated prostaglandin E2 [( 3H]PGE2) in the isolated perfused lung, and by increase in the weight ratio (wet-to-dry) of lung. Two hours after ANTU administration, the clearance of 99mTcDTPA was significantly faster than in untreated animals and implied an increase in permeability of the alveolar-capillary barrier. This change preceded the increase in wet-to-dry weight ratio of lung, which was not significant until 5 h after ANTU administration. The pharmacokinetics of [3H]PGE2 were significantly altered after ANTU and these changes persisted beyond the time when both lung weight ratio and 99mTcDTPA clearance had recovered to normal values. We conclude that both 99mTcDTPA clearance and PGE2 pharmacokinetics change in ANTU-induced lung injury but with different time courses. In the progressive phase of lung injury due to ANTU, the early change in clearance of 99mTcDTPA suggests that an increased permeation of the alveolar capillary barrier by this small molecule precedes pulmonary edema due to an increased colloid permeability of the barrier. Abnormal metabolism in the pulmonary microvasculature persists when the permeability defect and edema have recovered.  相似文献   

12.
13.
Alveolar liquid pressure (Pliq) was measured by micropipettes in conjunction with a servo-nulling pressure measuring system in isolated air-inflated edematous dog lungs. Pliq was measured in lungs either washed with a detergent (0.01% Triton X-100) or subjected to refrigeration for 2-3 days followed by ventilation for 3 h. At 55% of total lung capacity (TLC, the volume at a transpulmonary pressure (Ptp) of 25 cmH2O before treatment), in both the Triton-washed and the ventilated lung, Ptp increased from 5 to 11 cmH2O, whereas Pliq, decreased from -3 to -11 cmH2O relative to alveolar air pressure. Similar increases in Ptp and decreases in Pliq were obtained at higher lung volumes. Alveolar surface tension (T) was estimated from the Laplace equation for a spherical air-liquid interface, assuming that the radius of curvature varies as (volume)n, for -1/3 less than n less than 1/3. For uniform expansion of alveoli (n = 1/3), estimated T was 6 and 18 dyn/cm at 55 and 85% TLC, respectively, before treatment and increased to 23 and 40 dyn/cm following either Triton washing or ventilation. If pericapillary interstitial fluid pressure (Pi) equaled Pliq in edematous lungs, increases in T might reduce Pi and increase extravascular fluid accumulation in lungs made stiff by either Triton washing or cooling and ventilation using large tidal volumes.  相似文献   

14.
Diaz, Véronique, Irenej Kianicka, PatrickLetourneau, and Jean-Paul Praud. Inferior pharyngealconstrictor electromyographic activity during permeability pulmonaryedema in lambs. J. Appl. Physiol. 81(4): 1598-1604, 1996.Newborn mammals exhibit an active expiratory upper airwayclosure during the first hours of extrauterine life. We have recentlyshown that permeability pulmonary edema led to active expiratoryglottic closure in awake newborn lambs while hypoxia (inspiredO2 fraction 8%; 15 min) did not. In the presentstudy, we tested the hypothesis that expiratory glottic closure wasaccompanied by an increase in pharyngeal constrictor muscle expiratoryelectromyographic (EMG) activity. We studied seven awake nonsedatedlambs aged 8-20 days. Airflow (facial mask + pneumotachograph),blood gases (arterial catheter), and EMG activity of both thethyroarytenoid muscle (a glottic adductor) and the inferior pharyngealconstrictor muscle were recorded before and after intravenous injectionof halothane (0.05 ml/kg) to induce a permeability pulmonary edema. Acentral apnea (duration 15 s to 5 min) with continuous thyroarytenoidand inferior pharyngeal constrictor activity was observed withinseconds after halothane injection. One lamb died despite rescuingmaneuvers. An expiratory phasic thyroarytenoid and inferior pharyngealconstrictor muscle activity with simultaneous zero airflow graduallytook place and, by 30 min after halothane injection, was present ateach expiration in the six remaining lambs. Expiratory glottic andpharyngeal constrictor muscle EMG activity was subsequently presentduring the whole study period (1.5-5 h), even after correction ofthe initial hypoxia. Permeability lung edema was present at postmortem examination in all seven lambs. We conclude that a permeability pulmonary edema induced by intravenous halothane in nonsedated lambsenhances both glottic and pharyngeal constrictor muscle expiratory EMG.We hypothesize that expiratory contraction of the inferior pharyngealconstrictor muscle could participate in the active expiratory upperairway closure; this, in turn, might improve alveolocapillary gasexchange by increasing the end-expiratory lung volume.

  相似文献   

15.
The effect of increased arterial pressure (Pa) on microvessel pressure (Pc) and edema following microvascular obstruction (100-micron glass spheres) was examined in the isolated ventilated dog lung lobe pump perfused with blood. Lobar vascular resistance (PVR) increased 2- to 10-fold following emboli when either Pa or flow was held constant. Microbead obstruction increased the ratio of precapillary to total PVR from 0.60 +/- 0.05 to 0.84 +/- 0.02 (SE) or to 0.75 +/- 0.06 (n = 6), as determined by the venous occlusion and the isogravimetric capillary pressure techniques, respectively. Isogravimetric Pc (5.0 +/- 0.7) did not differ from Pc obtained by venous occlusion (3.8 +/- 0.2 Torr, n = 6). After embolism, Pc in constant Pa decreased from 6.2 +/- 0.3 to 4.4 +/- 0.3 Torr (n = 16). In the constant-flow group, embolism doubled Pa while Pc increased only 40% (6.7 +/- 0.6 to 9.2 +/- 1.4 Torr, n = 6) with no greater edema formation than in the constant Pa groups. These data indicate poor transmission of Pa to filtering capillaries. Microembolism, even when accompanied by elevated Pa and increased flow velocity of anticoagulated blood of low leukocyte and platelet counts, caused little edema. Our results suggest that mechanical effects alone of lung microvascular obstruction cause minimal pulmonary edema.  相似文献   

16.
Analysis of momentum transfer between inflow jets and resident gas during constant-flow ventilation (CFV) predicts inhomogeneity of alveolar pressures (PA) and volume, which might account for specific ventilation-variance in the lung. Using alveolar needles to measure pressures (PA) during CFV in eight anesthetized dogs with wide thoracotomy, we observed random dispersion of PA among lobes of up to 12.5 cmH2O. Within each lobe, the PA dispersion was up to 10 cmH2O at CFV of 90 l/min; when flow decreased, PA at all sites decreased, as did the intralobar dispersion. These pressure differences were not observed during conventional mechanical ventilation (CMV). During CFV with room air, dogs were hypoxemic [arterial PO2 (Pao2) 54 +/- 15 Torr] and the venous admixture (Qva/QT) was 50 +/- 15%. When inspiratory O2 fraction was increased to 0.4, Pao2 increased to 172 +/- 35 Torr and Qva/QT dropped to 13.5 +/- 8.4%, confirming considerable ventilation-perfusion (VA/Q) variance not observed during CMV. We conclude that momentum transfer between the inflow stream and resident gas caused inhomogeneities of alveolar pressures, volumes, and ventilation responsible for VA/Q variance and hypoxemia during CFV. Conceivably, the abnormal ventilation distribution is minimized by collateral ventilation and forces of interdependence between regions of high and low alveolar pressures. Momentum transfer also predicted the mucosal damage observed on histological evaluation of the bronchial walls near the site of inflow jet impact.  相似文献   

17.
18.
To quantify the inhomogeneity of alveolar pressures (PA) during cyclic changes in lung volume similar to those present during spontaneous breathing, inhomogeneity of PA was measured with an alveolar capsule technique in six excised canine lungs. The lungs were ventilated by a quasi-sinusoidal pump with a constant end-expiratory lung volume and tidal volumes of 10, 20, and 40% of vital capacity at breathing frequencies ranging from 5 to 45 breaths/min. Inhomogeneity of PA was quantified as the sample standard deviation of pressures measured in three capsules. A component of inhomogeneity in phase with flow and a smaller component out of phase with flow were present. The in-phase component increased approximately linearly with flow. The ratio of inhomogeneity to flow was smaller at large tidal volumes and, at the two higher tidal volumes studied, the ratio was greater during inspiration than during expiration. If these data are interpreted in terms of a simple circuit model, this degree of inhomogeneity implies an approximately twofold variation in regional time constants. Despite these considerable differences in time constants, the absolute amount of inhomogeneity as defined by the sample standard deviation of the three PA's was small (maximum 0.57 +/- 0.32 cmH2O at the highest breathing frequency and tidal volume) because airway resistance in the canine lung was small.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号