首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Fusion genetic analysis of gibberellin signaling mutants   总被引:1,自引:0,他引:1  
A fusion genetic strategy was used to identify gibberellin (GA) signaling mutants in transgenic Arabidopsis expressing the beta-glucuronidase (GUS) and firefly luciferase (LUC) reporter genes under control of the GA-responsive GASA1 promoter. Initial analyses determined the spatial and temporal patterns of reporter expression, and showed that reporter induction by GA was antagonized by ABA. gamma-Irradiated M2 progeny with altered reporter activities were identified by LUC bioimaging followed by GUS assays and northern hybridization of the endogenous GASA1 mRNA. Genetic analysis showed that three mutants, which overexpressed both reporters and endogenous GASA1, were caused by recessive (goe1 and goe2, for GASA over-expressed) and semi-dominant (goe3) mutations at different loci. These mutants are altered in their sensitivity to GA and the GA biosynthetic inhibitor paclobutrazol, and in the expression of several GA signaling related genes.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase family member that plays a central role in cytokine- and stress-induced apoptosis by activating c-Jun N-terminal kinase and p38 signaling cascades. ASK1-induced apoptotic activity is up-regulated by two cellular factors, Daxx and TRAF2, through direct protein-protein interactions. Daxx and TRAF2 are death receptor-associated proteins in Fas and tumor necrosis factor-alpha pathways, respectively. Recent studies suggest that calcium signaling may regulate ASK1 pathway. Here we report that human D53L1, a member of the tumor protein D52 family involved in cell proliferation and calcium signaling, up-regulates the ASK1-induced apoptosis. The human D53L1 physically interacts with the C-terminal regulatory domain of ASK1 and promotes ASK1-induced apoptotic activity by activating caspase signaling in mammalian cells. In luciferase reporter assays, hD53L1 activates c-Jun N-terminal kinase-mediated transactivation in the presence of ASK1. Expression of hD53L1 enhances autophosphorylation and kinase activity of ASK1 but has no effect on ASK1 oligomerization that is necessary for kinase activity and on binding of ASK1 to MKK6, a downstream factor of ASK1. Taken together, these results suggest that activation of ASK1 by hD53L1 may provide a novel mechanism for ASK1 regulation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号