首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpha- and beta-subunits of Torpedo californica Na+/K(+)-ATPase were expressed in turn in single oocytes by alternately microinjecting the specific mRNAs for the alpha- and beta-subunits. The mRNA first injected was degraded prior to the injection of the second mRNA by injecting the antisense oligonucleotide specific for the first mRNA. The pre-existing beta-subunit, which had been synthesized by injecting mRNA for the beta-subunit, could assemble with the alpha-subunit expressed later in the single oocytes and the resulting alpha beta complex acquired both ouabain-binding and Na+/K(+)-ATPase activities. On the other hand, formation of the alpha beta complex was not detected when the alpha-subunit was expressed first, followed by the beta-subunit. These data suggest that the beta-subunit acts as a receptor or a stabilizer for the alpha-subunit upon the biogenesis of Na+/K(+)-ATPase.  相似文献   

2.
3.
Gastric H(+),K(+)-ATPase consists of alpha-subunit with 10 transmembrane domains and beta-subunit with a single transmembrane domain. We constructed cDNAs encoding chimeric beta-subunits between the gastric H(+),K(+)-ATPase and Na(+),K(+)-ATPase beta-subunits and co-transfected them with the H(+),K(+)-ATPase alpha-subunit cDNA in HEK-293 cells. A chimeric beta-subunit that consists of the cytoplasmic plus transmembrane domains of Na(+),K(+)-ATPase beta-subunit and the ectodomain of H(+),K(+)-ATPase beta-subunit assembled with the H(+),K(+)-ATPase alpha-subunit and expressed the K(+)-ATPase activity. Therefore, the whole cytoplasmic and transmembrane domains of H(+),K(+)-ATPase beta-subunit were replaced by those of Na(+),K(+)-ATPase beta-subunit without losing the enzyme activity. However, most parts of the ectodomain of H(+),K(+)-ATPase beta-subunit were not replaced by the corresponding domains of Na(+), K(+)-ATPase beta-subunit. Interestingly, the extracellular segment between Cys(152) and Cys(178), which contains the second disulfide bond, was exchangeable between H(+),K(+)-ATPase and Na(+), K(+)-ATPase, preserving the K(+)-ATPase activity intact. Furthermore, the K(+)-ATPase activity was preserved when the N-terminal first 4 amino acids ((67)DPYT(70)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the corresponding amino acids ((63)SDFE(66)) of Na(+),K(+)-ATPase beta-subunit. The ATPase activity was abolished, however, when 4 amino acids ((76)QLKS(79)) in the ectodomain of H(+),K(+)-ATPase beta-subunit were replaced by the counterpart ((72)RVAP(75)) of Na(+),K(+)-ATPase beta-subunit, indicating that this region is the most N-terminal one that discriminates the H(+),K(+)-ATPase beta-subunit from that of Na(+), K(+)-ATPase.  相似文献   

4.
By altering the Na+/K+ electrochemical gradient, Na+,K(+)-ATPase activity profoundly influences cardiac cell excitability and contractility. The recent finding of mineralocorticoid hormone receptors in the heart implies that Na+,K(+)-ATPase gene expression, and hence cardiac function, is regulated by aldosterone, a corticosteroid hormone associated with certain forms of hypertension and classically involved in regulating Na+,K(+)-ATPase gene expression and transepithelial Na+ transport in tissues such as the kidney. The regulation by aldosterone of the major cardiac Na+,K(+)-ATPase isoform genes, alpha-1 and beta-1, were studied in adult and neonatal rat ventricular cardiocytes grown in defined serum-free media. In both cell types, aldosterone-induced a rapid and sustained 3-fold induction in alpha-1 mRNA accumulation within 6 h. beta-1 mRNA was similarly induced. alpha-1 mRNA induction occurred over the physiological range with an EC50 of 1-2 nM, consistent with binding of aldosterone to the high affinity mineralocorticoid hormone receptor. In adult cardiocytes, this was associated with a 36% increase in alpha subunit protein accumulation and an increase in Na(+)-K(+)-ATPase transport activity. Aldosterone did not alter the 3-h half-life of alpha-1 mRNA, indicating an induction of alpha-1 mRNA synthesis. Aldosterone-dependent alpha-1 mRNA accumulation was not blocked by the protein synthesis inhibitor cycloheximide, whereas amiloride inhibited both an aldosterone-dependent increase in intracellular Na+ [Na+]i) and alpha-1 mRNA accumulation. This demonstrates that aldosterone directly stimulates Na+,K(+)-ATPase alpha-1 subunit mRNA synthesis and protein accumulation in cardiac cells throughout development and suggests that the heart is a mineralocorticoid-responsive organ. An early increase in [Na+]i may be a proximal event in the mediation of the hormone effect.  相似文献   

5.
6.
A series of Northern blot hybridization experiments using probes derived from the rat gastric H+,K(+)-ATPase cDNA and the human ATP1AL1 gene revealed the presence of a 4.3-kilobase mRNA in colon that seemed likely to encode the distal colon H+,K(+)-ATPase, the enzyme responsible for K+ absorption in mammalian colon. A rat colon library was then screened using a probe from the ATP1AL1 gene, and cDNAs containing the entire coding sequence of a new P-type ATPase were isolated and characterized. The deduced polypeptide is 1036 amino acids in length and has an Mr of 114,842. The protein exhibits 63% amino acid identity to the gastric H+,K(+)-ATPase alpha-subunit and 63% identity to the three Na+,K(+)-ATPase alpha-subunit isoforms, consistent with the possibility that it is a K(+)-transporting ATPase. Northern blot analyses show that the 4.3-kilobase mRNA is expressed at high levels in distal colon; at much lower levels in proximal colon, kidney, and uterus; and at trace levels in heart and forestomach. The high mRNA levels in distal colon and the similarity of the colon pump to both gastric H+,K(+)- and Na+,K(+)-ATPases suggest that it is the distal colon H+,K(+)-ATPase. Furthermore, expression of its mRNA in kidney raises the possibility that the enzyme also corresponds to the H+,K(+)-ATPase that seems to play a role in K+ absorption and H+ secretion in the distal nephron.  相似文献   

7.
The alpha- and beta-subunits of Na+,K+-ATPase and H+,K+-ATPase were expressed in Sf9 cells in different combinations. Immunoprecipitation of the alpha-subunits resulted in coprecipitation of the accompanying beta-subunit independent of the type of beta-subunit. This indicates cross-assembly of the subunits of the different ATPases. The hybrid ATPase with the catalytic subunit of Na+,K+-ATPase and the beta-subunit of H+,K+-ATPase (NaKalphaHKbeta) showed an ATPase activity, which was only 12 +/- 4% of the activity of the Na+,K+-ATPase with its own beta-subunit. Likewise, the complementary hybrid ATPase with the catalytic subunit of H+,K+-ATPase and the beta-subunit of Na+,K+-ATPase (HKalphaNaKbeta) showed an ATPase activity which was 9 +/- 2% of that of the recombinant H+,K+-ATPase. In addition, the apparent K+ affinity of hybrid NaKalphaHKbeta was decreased, while the apparent K+ affinity of the opposite hybrid HKalphaNaKbeta was increased. The hybrid NaKalphaHKbeta could be phosphorylated by ATP to a level of 21 +/- 7% of that of Na+,K+-ATPase. These values, together with the ATPase activity gave turnover numbers for NaKalphabeta and NaKalphaHKbeta of 8800 +/- 310 min-1 and 4800 +/- 160 min-1, respectively. Measurements of phosphorylation of the HKalphaNaKbeta and HKalphabeta enzymes are consistent with a higher turnover of the former. These findings suggest a role of the beta-subunit in the catalytic turnover. In conclusion, although both Na+,K+-ATPase and H+,K+-ATPase have a high preference for their own beta-subunit, they can function with the beta-subunit of the other enzyme, in which case the K+ affinity and turnover number are modified.  相似文献   

8.
Socially subordinate rainbow trout (Oncorhynchus mykiss) experience chronic stress that impacts upon a variety of physiological functions, including Na(+) regulation. Owing to the tight coupling between Na(+) and Cl(-) uptake and, respectively, H(+) and HCO(3)(-) loss at the gill, ionoregulatory changes associated with social status may affect acid-base regulation. The present study assessed the responses of dominant, subordinate and control trout to hypercapnia (1% CO(2)) to test this hypothesis. Social status appeared to impact net acid excretion (J(net)H(+)) as subordinate individuals failed to increase net acid flux in response to hypercapnia. However, blood acid-base status was found to be unaffected by social status before or during hypercapnic exposure, indicating that subordinate fish were as effective as dominant or control trout in achieving compensation for the acid-base disturbance induced by hypercapnic exposure. Compensation in all groups involved decreasing Cl(-) uptake in response to hypercapnia. The branchial activities of both Na(+),K(+)-ATPase (NKA) and V-type H(+)-ATPase were affected by social interactions and/or exposure to hypercapnia. Branchial NKA activity was higher but V-ATPase activity was lower in control fish than in dominant or subordinate trout. In addition, control and subordinate but not dominant trout exposed to 24h of hypercapnia exhibited significantly higher branchial V-ATPase activity than fish maintained in normocapnia. Collectively, the data suggest that subordinate trout are able to regulate blood pH during a respiratory acidosis.  相似文献   

9.
By regulating transmembrane Na+ and K+ concentrations and membrane potential, the Na+,K(+)-ATPase plays an important role in regulating cardiac, skeletal, and smooth muscle function. A high degree of amino acid sequence and structural identity characterizes the three Mr 100,000 Na+,K(+)-ATPase alpha subunit isoforms expressed in cardiac and skeletal muscle. Strikingly, vascular smooth muscle utilizes alternative RNA processing of the alpha-1 gene to express a structurally distinct Mr approximately 65,000 isoform, alpha 1-T (truncated). Analysis of both its mRNA and protein structure reveals that alpha-1-T represents a major, evolutionarily conserved, truncated Na+,K(+)-ATPase isoform expressed in vascular smooth muscle. This demonstrates an unexpected complexity in the regulation of vascular smooth muscle Na+,K(+)-ATPase gene expression and suggests that a structurally novel, truncated alpha subunit may play a role in vascular smooth muscle active ion transport.  相似文献   

10.
The localization of Na+,K(+)-ATPase in epithelia of the organs of the branchial cavity of Homarus gammarus exposed to seawater and dilute seawater was examined by immunofluorescence microscopy and immunogold electron microscopy with a monoclonal antibody IgG alpha 5 raised against the avian alpha-subunit of the Na-,K(+)-ATPase. In juveniles held in seawater, fluorescent staining was observed only in the epithelial cells of epipodites. In juveniles held in dilute seawater, heavier immunoreactivity was observed in the epithelial cells of epipodites, and positive immunostaining was also observed along the inner-side epithelial layer of the branchiostegites. No fluorescent staining was observed in the gill epithelia. At the ultrastructural level, the Na+,K(+)-ATPase was localized in the basolateral infolding systems of the epipodite and inner-side branchiostegite epithelia of juveniles held in dilute seawater, mostly along the basal lamina. The expression of Na+,K(+)-ATPase therefore differs within tissues of the branchial cavity and according to the external salinity. These and previous ultrastructural observations suggest that the epipodites, and to a lesser extent the inner-side epithelium of the branchiostegites, are involved in the slight hyper-regulation displayed by lobsters at low salinity. Enhanced Na+,K(+)-ATPase activity and de novo synthesis of Na+,K(+)-ATPase within the epipodite and branchiostegite epithelia may be key points enabling lobsters to adapt to low salinity environments.  相似文献   

11.
Active preparations of Na+,K(+)-ATPase containing three types of catalytic isoforms were isolated from the bovine brain to study the structure and function of the sodium pump. Na+,K(+)-ATPase from the brain grey matter was found to have a biphasic kinetics with respect to ouabain inhibition and to consist of a set of isozymes with subunit composition of alpha 1 beta 1, alpha 2 beta m and alpha 3 beta m (where m = 1 and/or 2). The alpha 1 beta 1 form clearly dominated. For the first time, glycosylation of the beta 1-subunit of the alpha 1 beta 1-type isozymes isolated from the kidney and brain was shown to be different. Na+,K(+)-ATPase from the brain stem and axolemma consisted mainly of a mixture of alpha 2 beta 1 and alpha 3 beta 1 isozymes having identical ouabain inhibition constants. In epithelial and arterial smooth muscle cells, where the plasma membrane is divided into functionally and biochemically distinct domains, the polarized distribution of Na+,K(+)-ATPase is maintained through interactions with the membrane cytoskeleton proteins ankyrin and spectrin (Nelson and Hammerton, 1989; Lee et al., 1996). We were the first to show the presence of the cytoskeleton protein tubulin (beta 5-isoform) and glyceraldehyde-3-phosphate dehydrogenase in a high-molecular-weight complex with Na+,K(+)-ATPase in brain stem neuron cells containing alpha 2 beta 1 and alpha 3 beta 1 isozymes. Consequently, the influence of not only subunit composition, but also of glycan and cytoskeleton structures and other plasma membrane-associated proteins on the functional properties of Na+,K(+)-ATPase isozymes is evident.  相似文献   

12.
Messenger RNA for the alpha subunit of Torpedo californica Na+/K(+)-ATPase was injected into Xenopus oocytes together with that of the beta subunit of rabbit H+/K(+)-ATPase. The Na+/K(+)-ATPase alpha subunit was assembled in the microsomal membranes with the H+/K(+)-ATPase beta subunit, and became resistant to trypsin. These results suggest that the H+/K(+)-ATPase beta subunit facilitates the stable assembly of the Na+/K(+)-ATPase alpha subunit in microsomes.  相似文献   

13.
We tested the hypothesis that the adenylate cyclase system and Na+, K(+)-ATPase are reciprocally related in rat pancreatic islets. We studied the effect of theophylline, caffeine, and dibutyryl cyclic AMP on Na+, K(+)-ATPase activity in a membrane preparation from collagenase-isolated rat islets. Theophylline, caffeine, or dibutyryl cyclic AMP, in concentrations of 1 mM, all inhibited Na+, K(+)-ATPase activity (44,62, and 43%, respectively). Kinetic analysis indicated that theophylline and dibutyryl cAMP inhibit Na+, K(+)-ATPase by different mechanisms; theophylline decreased Vmax and decreased apparent Km (ATP), whereas dibutyryl cAMP decreased Vmax and increased apparent Km (ATP). Similar inhibition of Na+, K(+)-ATPase by theophylline or dibutyryl cAMP was noted in a particulate fraction from rat kidney and in a purified porcine brain Na+, K(+)-ATPase preparation. The adenylate cyclase system and Na+, K(+)-ATPase may act reciprocally in pancreatic islets and in other tissues. In the beta cell this relationship may be essential in coordinating consumption of ATP in the stimulated, as opposed to the rest, state.  相似文献   

14.
We investigated quantitatively the ultrastructural localization of the alpha-subunit of Na+,K(+)-ATPase in rat retinal pigment epithelial cells by the protein A-gold technique, using an affinity-purified antibody against the alpha-subunit of rat kidney Na+,K(+)-ATPase. Immunoblot analysis showed that the antibody bound specifically to the alpha- and alpha(+)-subunits of Na+,K(+)-ATPase in the whole retina [the sensory retina plus retinal pigment epithelium (RPE)]. Rat eyes were fixed by perfusion with 4% paraformaldehyde containing 1% glutaraldehyde and embedded in Lowicryl K4M. Ultra-thin sections were incubated with affinity-purified antibody against the alpha-subunit of rat kidney Na+,K(+)-ATPase and subsequently with protein A-gold complex. Light microscopy with a silver enhancement procedure revealed Na+,K(+)-ATPase localized to both the apical and the basal plasma membrane domains of the RPE. Quantitative immunocytochemical analysis by electron microscopy showed a higher density of gold particles on the apical surface than on the basolateral one. Microvilli are so well developed on the apical surface of the RPE that the apical surface profile is much longer than the basolateral one. This means that Na+,K(+)-ATPase is mainly located on the apical surface of the RPE cells.  相似文献   

15.
Na+,K(+)-ATPase activities in macroscopically unchanged mucosa (conditionally normal tissue) and human colorectal carcinoma (mainly low-grade and moderately differentiated adenocarcinomas) have been investigated. Microsomal fractions are similar by dimensions of the membrane fragments detected by photon correlation spectroscopy analysis. The activation optima under digitonin pretreatment of the membrane fractions differ significantly for Na+,K(+)-ATPase and concomitant Mg(2+)-ATPase activity, but are the same in conditionally normal and cancerous tissues. This allows to detect correctly total levels of the Na+,K(+)-ATPase activity in the detergent-pretreated preparations. The moderate decrease of the Na+,K(+)-ATPase activity is revealed in carcinomas. It is concluded that a decrease of activity of the ouabain-sensitive human Na+,K(+)-ATPase is characteristic of colorectal carcinoma.  相似文献   

16.
It is generally assumed that negatively charged residues present in the alpha-subunit of gastric H(+),K(+)-ATPase are involved in K(+) binding and transport. Despite the fact that there is no difference between various species regarding these negatively charged residues, it was observed that the apparent K(+) affinity of the pig enzyme was much lower than that of the rat H(+),K(+)-ATPase. By determining the K(+)-stimulated dephosphorylation reaction of the phosphorylated intermediate K(0.5) values for K(+) of 0.12+/-0.01 and 1.73+/-0.03 mM were obtained (ratio 14.4) for the rat and the pig enzyme, respectively. To investigate the reason for the observed difference in K(+) sensitivity, both enzymes originating from the gastric mucosa were either reconstituted in a similar lipid environment or expressed in Sf9 cells. After reconstitution in K(+)-permeable phosphatidylcholine/cholesterol liposomes K(0.5) values for K(+) of 0.16+/-0.01 and 0.35+/-0.05 mM for the rat and pig enzyme respectively were measured (ratio 2.2). After expression in Sf9 cells the pig gastric H(+),K(+)-ATPase still showed a 4.1 times lower K(+) sensitivity than that of the rat enzyme. This means that the difference in K(+) sensitivity of the rat and pig gastric H(+), K(+)-ATPase is not only due to a different lipid composition but also to the structure of either the alpha- or beta-subunit. Expression of hybrid enzymes in Sf9 cells showed that the difference in K(+) sensitivity between the rat and pig gastric H(+),K(+)-ATPase is primarily due to differences in the beta-subunit.  相似文献   

17.
18.
Skeletal muscle expresses multiple isoforms of the Na(+)-K(+)-ATPase. Their expression has been shown to be differentially regulated under pathophysiological conditions. In addition, previous studies suggest possible age-dependent alterations in Na(+)-K(+) pump function. The present study tests the hypothesis that advancing age is associated with altered Na(+)-K(+)-ATPase enzyme activity and isoform-specific changes in expression of the enzyme subunits. Red and white gastrocnemius (Gast) as well as soleus muscles of male Fischer 344/Brown Norway (F-344/BN) rats at 6, 18, and 30 mo of age were examined. Na(+)-K(+)-ATPase activity, measured by K(+)-stimulated 3-O-methylfluorescein phosphatase activity, increased by approximately 50% in a mixed Gast homogenate from 30-mo-old compared with 6- and 18-mo-old rats. Advancing age was associated with markedly increased alpha(1)- and beta(1)-subunit, and decreased alpha(2)- and beta(2)-subunit in red and white Gast. In soleus, there were similar changes in expression of alpha(1)- and alpha(2)-subunits, but levels of beta(1)-subunit were unchanged. Functional Na(+)-K(+)-ATPase units, measured by [(3)H]ouabain binding, undergo muscle-type specific changes. In red Gast, high-affinity ouabain-binding sites, which are a measure of alpha(2)-isozyme, increased in 30-mo-old rats despite decreased levels of alpha(2)-subunit. In white Gast, by contrast, decreased levels of alpha(2)-subunit were accompanied by decreased high-affinity ouabain-binding sites. Finally, patterns of expression of the four myosin heavy chain (MHC) isoforms (type I, IIA, IIX, and IIB) in these muscles were similar in the three age groups examined. We conclude that, in the skeletal muscles of F-344/BN rats, advancing age is associated with muscle type-specific alterations in Na(+)-K(+)-ATPase activity and patterns of expression of alpha- and beta-subunit isoforms. These changes apparently occurred without obvious shift in muscle fiber types, since expression of MHC isoforms remained unchanged. Some of the alterations occurred between middle-age (18 mo) and senescence (30 mo), and, therefore, may be attributed to aging of skeletal muscle.  相似文献   

19.
Human brain cDNA libraries were screened with cDNA inserts corresponding to the mRNA for the Na+,K(+)-ATPase alpha-subunit from pig kidney. The results obtained demonstrate the existence of two highly homologous mRNAs encoding the alpha- and alpha III-isoforms of the Na+,K(+)-ATPase catalytic subunit.  相似文献   

20.
Gastric H(+),K(+)-ATPase consists of alpha and beta-subunits. The alpha-subunit is the catalytic subunit, and the beta-subunit is a glycoprotein stabilizing the alpha/beta complex in the membrane as a functional enzyme. There are seven putative N-glycosylation sites on the beta-subunit. In this study, we examined the roles of the carbohydrate chains of the beta-subunit by expressing the alpha-subunit together with the beta-subunit in which one, several, or all of the asparagine residues in the N-glycosylation sites were replaced by glutamine. Removing any one of seven carbohydrate chains from the beta-subunit retained the H(+),K(+)-ATPase activity. The effects of a series of progressive removals of carbohydrate chains on the H(+),K(+)-ATPase activity were cumulative, and removal of all carbohydrate chains resulted in the complete loss of H(+), K(+)-ATPase activity. Removal of any single carbohydrate chain did not affect the alpha/beta assembly; however, little alpha/beta assembly was observed after removal of all the carbohydrate chains from the beta-subunit. In contrast, removal of three carbohydrate chains inhibited the surface delivery of the beta-subunit and the alpha-subunit assembled with the beta-subunit, indicating that the surface delivery mechanism is more dependent on the carbohydrate chains than the expression of the H(+),K(+)-ATPase activity and alpha/beta assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号