首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Bernad  L Blanco  J M Lázaro  G Martín  M Salas 《Cell》1989,59(1):219-228
The 3'----5' exonuclease active site of E. coli DNA polymerase I is predicted to be conserved for both prokaryotic and eukaryotic DNA polymerases based on amino acid sequence homology. Three amino acid regions containing the critical residues in the E. coli DNA polymerase I involved in metal binding, single-stranded DNA binding, and catalysis of the exonuclease reaction are located in the amino-terminal half and in the same linear arrangement in several prokaryotic and eukaryotic DNA polymerases. Site-directed mutagenesis at the predicted exonuclease active site of the phi 29 DNA polymerase, a model enzyme for prokaryotic and eukaryotic alpha-like DNA polymerases, specifically inactivated the 3'----5' exonuclease activity of the enzyme. These results reflect a high evolutionary conservation of this catalytic domain. Based on structural and functional data, a modular organization of enzymatic activities in prokaryotic and eukaryotic DNA polymerases is also proposed.  相似文献   

2.
The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.  相似文献   

3.
M de Vega  J M Lazaro  M Salas    L Blanco 《The EMBO journal》1996,15(5):1182-1192
By site-directed mutagenesis in phi29 DNA polymerase, we have analyzed the functional importance of two evolutionarily conserved residues belonging to the 3'-5' exonuclease domain of DNA-dependent DNA polymerases. In Escherichia coli DNA polymerase I, these residues are Thr358 and Asn420, shown by crystallographic analysis to be directly acting as single-stranded DNA (ssDNA) ligands at the 3'-5' exonuclease active site. On the basis of these structural data, single substitution of the corresponding residues of phi29 DNA polymerase, Thr15 and Asn62, produced enzymes with a very reduced or altered capacity to bind ssDNA. Analysis of the residual 3'-5' exonuclease activity of these mutant derivatives on ssDNA substrates allowed us to conclude that these two residues do not play a direct role in the catalysis of the reaction. On the other hand, analysis of the 3'-5' exonuclease activity on either matched or mismatched primer/template structures showed a critical role of these two highly conserved residues in exonucleolysis under polymerization conditions, i.e. in the proofreading of DNA polymerization errors, an evolutionary advantage of most DNA-dependent DNA polymerases. Moreover, in contrast to the dual role in 3'-5' exonucleolysis and strand displacement previously observed for phi29 DNA polymerase residues acting as metal ligands, the contribution of residues Thr15 and Asn62 appears to be restricted to the proofreading function, by stabilization of the frayed primer-terminus at the 3'-5' exonuclease active site.  相似文献   

4.
DNA polymerase I (pol I) from Escherichia coli has three well-defined activities: DNA polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. We have raised monoclonal antibodies to pol I which selectively neutralize each of these three activities, thus supporting the model of separate active sites for each activity, heretofore exclusively demonstrated with proteolytic fragments of pol I. Antibodies from each class could bind pol I in the presence of antibodies of another class, indicating the existence of significant spatial separation between each of the three sites. In addition, several of the neutralizing antibodies were able to distinguish particular activities of the 5'-3' exonuclease. One of them, for example, inhibited the RNase H activity but not the DNase activity. Two other antibodies could, in addition to inhibiting the polymerase and the 3'-5' exonuclease, either stimulate or inhibit the 5'-3' exonuclease depending upon the assay conditions, particularly the ionic strength.  相似文献   

5.
Y T Hwang  B Y Liu  D M Coen    C B Hwang 《Journal of virology》1997,71(10):7791-7798
The herpes simplex virus DNA polymerase catalytic subunit, which has intrinsic polymerase and 3'-5' exonuclease activities, contains sequence motifs that are homologous to those important for 3'-5' exonuclease activity in other polymerases. The role of one such motif, Exo III, was examined in this study. Mutated polymerases containing either a single tyrosine-to-histidine change at residue 577 or this change plus an aspartic acid-to-alanine at residue 581 in the Exo III motif exhibited defective or undetectable exonuclease activity, respectively, yet retained substantial polymerase activity. Despite the defects in exonuclease activity, the mutant polymerases were able to support viral replication in transient complementation assays, albeit inefficiently. Viruses replicated via the action of these mutant polymerases exhibited substantially increased frequencies of mutants resistant to ganciclovir. Furthermore, when the Exo III mutations were incorporated into the viral genome, the resulting mutant viruses displayed only modestly defect in replication in Vero cells and exhibited substantially increased mutation frequencies. The results suggest that herpes simplex virus can replicate despite severely impaired exonuclease activity and that the 3'-5' exonuclease contributes substantially to the fidelity of viral DNA replication.  相似文献   

6.
7.
The Klenow fragment of Escherichia coli DNA polymerase I houses catalytic centers for both polymerase and 3'-5' exonuclease activities that are separated by about 35 A. Upon the incorporation of a mismatched nucleotide, the primer terminus is transferred from the polymerase site to an exonuclease site designed for excision of the mismatched nucleotides. The structural comparison of the binary complexes of DNA polymerases in the polymerase and the exonuclease modes, together with a molecular modeling of the template strand overhang in Klenow fragment, indicated its binding in the region spanning residues 821-824. Since these residues are conserved in the "A" family DNA polymerases, we have designated this region as the RRRY motif. The alanine substitution of individual amino acid residues of this motif did not change the polymerase activity; however, the 3'-5' exonuclease activity was reduced 2-29-fold, depending upon the site of mutation. The R821A and R822A/Y824A mutant enzymes showed maximum cleavage defect with single-stranded DNA, mainly due to a large decrease in the ssDNA binding affinity of these enzymes. Mismatch removal by these enzymes was only moderately affected. However, data from the exonuclease-polymerase balance assays with mismatched template-primer suggest that the mutant enzymes are defective in switching mismatched primer from the polymerase to the exonuclease site. Thus, the RRRY motif provides a binding track for substrate ssDNA and for nonsubstrate single-stranded template overhang, in a polarity-dependent manner. This binding then facilitates cleavage of the substrate at the exonuclease site.  相似文献   

8.
T Uemori  Y Ishino  H Doi    I Kato 《Journal of bacteriology》1995,177(8):2164-2177
We cloned two genes encoding DNA polymerases from the hyperthermophilic archaeon Pyrodictium occultum. The deduced primary structures of the two gene products have several amino acid sequences which are conserved in the alpha-like (family B) DNA polymerases. Both genes were expressed in Escherichia coli, and highly purified gene products, DNA polymerases I and II (pol I and pol II), were biochemically characterized. Both DNA polymerase activities were heat stable, but only pol II was sensitive to aphidicolin. Both pol I and pol II have associated 5'-->3' and 3'-->5' exonuclease activities. In addition, these DNA polymerases have higher affinity to single-primed single-stranded DNA than to activated DNA; even their primer extension abilities by themselves were very weak. A comparison of the complete amino acid sequences of pol I and pol II with two alpha-like DNA polymerases from yeast cells showed that both pol I and pol II were more similar to yeast DNA polymerase III (ypol III) than to yeast DNA polymerase II (ypol II), in particular in the regions from exo II to exo III and from motif A to motif C. However, comparisons region by region of each polymerase showed that pol I was similar to ypol II and pol II was similar to ypol III from motif C to the C terminus. In contrast, pol I and pol II were similar to ypol III and ypol II, respectively, in the region from exo III to motif A. These findings suggest that both enzymes from P. occultum play a role in the replication of the genomic DNA of this organism and, furthermore, that the study of DNA replication in this thermophilic archaeon may lead to an understanding of the prototypical mechanism of eukaryotic DNA replication.  相似文献   

9.
The intervening domain of the thermostable Thermus aquaticus DNA polymerase (TAQ: polymerase), which has no catalytic activity, has been exchanged for the 3'-5' exonuclease domain of the homologous mesophile Escherichia coli DNA polymerase I (E.coli pol I) and the homologous thermostable Thermotoga neapolitana DNA polymerase (TNE: polymerase). Three chimeric DNA polymerases have been constructed using the three-dimensional (3D) structure of the Klenow fragment of the E.coli pol I and 3D models of the intervening and polymerase domains of the TAQ: polymerase and the TNE: polymerase: chimera TaqEc1 (exchange of residues 292-423 from TAQ: polymerase for residues 327-519 of E.coli pol I), chimera TaqTne1 (exchange of residues 292-423 of TAQ: polymerase for residues 295-485 of TNE: polymerase) and chimera TaqTne2 (exchange of residues 292-448 of TAQ: polymerase for residues 295-510 of TNE: polymerase). The chimera TaqEc1 showed characteristics from both parental polymerases at an intermediate temperature of 50 degrees C: high polymerase activity, processivity, 3'-5' exonuclease activity and proof-reading function. In comparison, the chimeras TaqTne1 and TaqTne2 showed no significant 3'-5' exonuclease activity and no proof-reading function. The chimera TaqTne1 showed an optimum temperature at 60 degrees C, decreased polymerase activity compared with the TAQ: polymerase and reduced processivity. The chimera TaqTne2 showed high polymerase activity at 72 degrees C, processivity and less reduced thermostability compared with the chimera TaqTne1.  相似文献   

10.
The use of 5'-AMP as a ligand for the affinity chromatography of DNA polymerases with intrinsic 3' to 5' exonuclease activities was investigated. The basis for this is that 5'-AMP would be expected to act as a ligand for the associated 3' to 5' exonuclease. The requirements for binding of Escherichia coli DNA polymerase I, T4 DNA polymerase, and calf thymus DNA polymerase delta, all of which have associated 3' to 5' exonuclease activities, to several commercially available 5'-AMP supports with different linkages of 5'-AMP to either agarose or cellulose were examined. The DNA polymerases which possessed 3' to 5' exonuclease activities were bound to agarose types in which the 5'-phosphoryl group and the 3'-hydroxyl group of the AMP were unsubstituted. Bound enzyme could be eluted by either an increase in ionic strength or competitive binding of nucleoside 5'-monophosphates. Magnesium was found to reinforce the binding of the enzyme to these affinity supports. DNA polymerase alpha, which does not have an associated 3' to 5' exonuclease activity, did not bind to any of these columns. These differences can be used to advantage for the purification of DNA polymerases that have associated 3' to 5' exonuclease activities, as well as a means for establishing the association of 3' to 5' exonuclease activities with DNA polymerases.  相似文献   

11.
Procaryotic DNA polymerases contain an associated 3'----5' exonuclease activity which provides a proofreading function and contributes substantially to replication fidelity. DNA polymerases of the eucaryotic herpes-type viruses contain similar associated exonuclease activities. We have investigated the fidelity of polymerases purified from wild type herpes simplex virus, as well as from mutator and antimutator strains. On synthetic templates, the herpes enzymes show greater relative exonuclease activities, and greater ability to excise a terminal mismatched base, than procaryotic DNA polymerases which proofread. On a phi X174 natural DNA template, the herpes enzymes are more accurate than purified eucaryotic DNA polymerases; the error rate is similar to E. coli polymerase I. However, conditions which abnegate proofreading by E. coli polymerase I have little effect on the herpes enzymes. We conclude that either these viral polymerases are accurate in the absence of proofreading, or the conditions examined have little effect on proofreading by the herpes DNA polymerases.  相似文献   

12.
Bacteriophage T4 gene 43 codes for the viral DNA polymerase. We report here the sequence of gene 43 and about 70 nucleotides of 5'- and 3'-flanking sequences, determined by both DNA and RNA sequencing. We have also purified T4 DNA polymerase from T4 infected Escherichia coli and from E. coli containing a gene 43 overexpression vector. A major portion of the deduced amino acid sequence has been verified by peptide mapping and sequencing of the purified DNA polymerase. All these results are consistent with T4 DNA polymerase having 898 amino acids with a calculated Mr = 103,572. Comparison of the primary structure of T4 DNA polymerase with the sequence of other procaryotic and eucaryotic DNA polymerases indicates that T4 DNA polymerase has regions of striking similarity with animal virus DNA polymerases and human DNA polymerase alpha. Surprisingly, T4 DNA polymerase shares only limited similarity with E. coli polymerase I and no detectable similarity with T7 DNA polymerase. Based on the location of specific mutations in T4 DNA polymerase and the conservation of particular sequences in T4 and eucaryotic DNA polymerases, we propose that the NH2-terminal half of T4 DNA polymerase forms a domain that carries out the 3'----5' exonuclease activity whereas the COOH-terminal half of the polypeptide contains the dNTP-binding site and is necessary for DNA synthesis.  相似文献   

13.
We have purified the DNA polymerase II of Escherichia coli from the recombinant strain carrying the plasmid which encodes the polB gene. We confirmed that the purified protein, of molecular weight 90,000, possesses a 3'----5' exonuclease activity in addition to DNA polymerizing activity in a single polypeptide. Its DNA polymerizing activity was sensitive to the drug aphidicoline, which is a specific and direct inhibitor of the alpha-like DNA polymerases including eukaryotic replicative DNA polymerases. Aphidicolin had no detectable effect on the 3'----5' exonuclease activity. The inhibition by aphidicolin on the polymerizing activity of polymerase II was competitive with respect to dNTP and uncompetitive with respect to template DNA. This mode of action is the same as that on eukaryotic DNA polymerase alpha. The apparent Ki value calculated from Lineweaver-Burk plots was 55.6 microM.  相似文献   

14.
DNA exonucleases are critical for DNA replication, repair, and recombination. In the bacterium Escherichia coli there are 14 DNA exonucleases including exonucleases I-IX (including the two DNA polymerase I exonucleases), RecJ exonuclease, SbcCD exonuclease, RNase T, and the exonuclease domains of DNA polymerase II and III. Here we report the discovery and characterization of a new E. coli exonuclease, exonuclease X. Exonuclease X is a member of a superfamily of proteins that have homology to the 3'-5' exonuclease proofreading subunit (DnaQ) of E. coli DNA polymerase III. We have engineered and purified a (His)(6)-exonuclease X fusion protein and characterized its activity. Exonuclease X is a potent distributive exonuclease, capable of degrading both single-stranded and duplex DNA with 3'-5' polarity. Its high affinity for single-strand DNA and its rapid catalytic rate are similar to the processive exonucleases RecJ and exonuclease I. Deletion of the exoX gene exacerbated the UV sensitivity of a strain lacking RecJ, exonuclease I, and exonuclease VII. When overexpressed, exonuclease X is capable of substituting for exonuclease I in UV repair. As we have proposed for the other single-strand DNA exonucleases, exonuclease X may facilitate recombinational repair by pre-synaptic and/or post-synaptic DNA degradation.  相似文献   

15.
The gene encoding the thermostable DNA polymerase from the archaeon Sulfolobus solfataricus (strain MT 4) was isolated by means of two degenerate oligonucleotide probes. They were designed on the basis of partial enzyme amino acid sequences. The gene was found to encode a 882 residues polypeptide chain with a deduced molecular mass of about 100 kDa. By comparison with other archaeal genes, putative regulatory sites were identified in the gene-flanking regions. By computer-assisted homology search, several sequence similarities among S. solfataricus and family B DNA polymerases were found. In addition, conserved sequence motifs, implicated in the 3'-5' exonuclease activity of E. coli DNA polymerase I and shared by various family A and B DNA polymerases, were also identified. This result suggests that the proofreading domains of all these enzymes are evolutionarily related.  相似文献   

16.
Prior to undergoing postsynthetic 3'-5' editing (proofreading), a defective DNA primer terminus must be transferred from the 5'-3' polymerase active site to a remote 3'-5' exonuclease site. To elucidate the mechanisms by which this occurs, we have used time-resolved fluorescence spectroscopy to study the interaction of dansyl-labeled DNA primer/templates with the Klenow fragment of Escherichia coli DNA polymerase I. The dansyl probe is positioned such that when the DNA substrate occupies the polymerase active site, the probe is solvent-exposed and possesses a short average fluorescence lifetime (4.7 ns) and extensive angular diffusion (42.5 degrees). Conversely, when the DNA substrate occupies the exonuclease active site, the probe becomes buried within the protein, resulting in an increase in the average lifetime (14.1 ns) and a decrease in the degree of angular diffusion (14.4 degrees ). If both polymerase and exonuclease binding modes are populated (lower limit approximately 5%), their markedly different fluorescence properties cause the anisotropy to decay with a characteristic "dip and rise" shape. Nonlinear least-squares analysis of these data recovers the ground-state mole fractions of exposed (x(e)) and buried (x(b)) probes, which are equivalent to the equilibrium proportions of the DNA substrate bound at the polymerase and exonuclease sites, respectively. The distribution between the polymerase and exonuclease binding modes is given by the equilibrium partitioning constant K(pe) (equal to x(b)/x(e)). The important determinants of the proofreading process can therefore be identified by changes made to either the protein or DNA that perturb the partitioning equilibrium and hence alter the magnitude of K(pe).  相似文献   

17.
A Bernad  A Zaballos  M Salas    L Blanco 《The EMBO journal》1987,6(13):4219-4225
The Bacillus subtilis phage luminal diameter 29 DNA polymerase, involved in protein-primed viral DNA replication, was inhibited by phosphonoacetic acid (PAA), a known inhibitor of alpha-like DNA polymerases, by decreasing the rate of elongation. Three highly conserved regions of amino acid homology, found in several viral alpha-like DNA polymerases and in the luminal diameter 29 DNA polymerase, one of them proposed to be the PAA binding site, were also found in the T4 DNA polymerase. This prokaryotic enzyme was highly sensitive to the drugs aphidicolin and the nucleotide analogues butylanilino dATP (BuAdATP) and butylphenyl dGTP (BuPdGTP), known to be specific inhibitors of eukaryotic alpha-like DNA polymerases. Two potential DNA polymerases from the linear plasmid pGKL1 from yeast and the S1 mitochondrial DNA from maize have been identified, based on the fact that they contain the three conserved regions of amino acid homology. Comparison of DNA polymerases from prokaryotic and eukaryotic origin showed extensive amino acid homology in addition to highly conserved domains. These findings reflect evolutionary relationships between hypothetically unrelated DNA polymerases.  相似文献   

18.
L Blanco  A Bernad  M Salas 《Gene》1992,112(1):139-144
The complete amino acid (aa) alignment of the N-terminal domain of 33 DNA-dependent DNA polymerases encompassing the putative segments Exo I, Exo II and Exo III, proposed by Bernad et al. [Cell 59 (1989) 219-228] to form a conserved 3'-5' exonuclease active site in prokaryotic and eukaryotic DNA polymerases, allowed us to identify and/or correct some of the most conserved segments (Exo I, II and III) in certain DNA polymerases. In particular, the aa region of T4 DNA polymerase and other eukaryotic (viral and cellular) DNA polymerases previously proposed as Exo I segment 1, did not align with the Exo I segment of Escherichia coli DNA polymerase I (PolI)-like and protein-primed DNA polymerases; instead, a new conserved region of aa similarity was identified in T4 DNA polymerase and eukaryotic (viral and cellular) DNA polymerases as their corresponding Exo I segment. Therefore, according to our alignment, the recently reported T4 DNA polymerase site-directed mutants, D189A and E191A [Reha-Krantz et al., Proc. Natl. Acad. Sci. USA 88 (1991) 2417-2421], do not correspond to what we now consider the critical Exo I motif of PolI. As discussed in this communication, the functional importance of conserved segments Exo I, Exo II and Exo III is supported by site-directed mutagenesis in PolI, and in phi 29, T7 and delta(Sc) DNA polymerases. Furthermore, genetically selected T4 DNA polymerase mutator mutants form two main clusters, centered in the conserved segment Exo III and in the newly identified Exo I segment.  相似文献   

19.
Cenarchaeum symbiosum, an archaeon which lives in specific association with a marine sponge, belongs to a recently recognized nonthermophilic crenarchaeotal group that inhabits diverse cold and temperate environments. Nonthermophilic crenarchaeotes have not yet been obtained in laboratory culture, and so their phenotypic characteristics have been inferred solely from their ecological distribution. Here we report on the first protein to be characterized from one of these organisms. The DNA polymerase gene of C. symbiosum was identified in the vicinity of the rRNA operon on a large genomic contig. Its deduced amino acid sequence is highly similar to those of the archaeal family B (alpha-type) DNA polymerases. It shared highest overall sequence similarity with the crenarchaeal DNA polymerases from the extreme thermophiles Sulfolobus acidocaldarius and Pyrodictium occultum (54% and 53%, respectively). The conserved motifs of B (alpha-)-type DNA polymerases and 3'-5' exonuclease were identified in the 845-amino-acid sequence. The 96-kDa protein was expressed in Escherichia coli and purified with affinity tags. It exhibited its highest specific activity with gapped-duplex (activated) DNA as the substrate. Single-strand- and double-strand-dependent 3'-5' exonuclease activity was detected, as was a marginal 5'-3' exonuclease activity. The enzyme was rapidly inactivated at temperatures higher than 40 degrees C, with a half-life of 10 min at 46 degrees C. It was found to be less thermostable than polymerase I of E. coli and is substantially more heat labile than its most closely related homologs from thermophilic and hyperthermophilic crenarchaeotes. Although phylogenetic studies suggest a thermophilic ancestry for C. symbiosum and its relatives, our biochemical analysis of the DNA polymerase is consistent with the postulated nonthermophilic phenotype of these crenarchaeotes, to date inferred solely from their ecological distribution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号