首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative enzymes possess catalytic activity in systems with ionic liquids   总被引:4,自引:2,他引:2  
Oxidative enzymes, laccase C from Trametes sp. and horseradish and soybean peroxidases, catalyzed oxidation reactions in systems with ionic liquids whose content varied from several volume percent to almost total non-aqueous ionic liquids. Similar to the effects produced by standard organic solvents used in non-aqueous enzymology, catalytic activity of the enzymes was decreased by adding a water-miscible ionic liquid, 4-methyl-N-butylpyridinium tetrafluoroborate, or by suspending the enzyme in a water-immiscible ionic liquid, 1-butyl-3-methylimdizaolium hexafluorophosphate. For the oxidation of anthracene, catalyzed by laccase C and assisted by a number of mediators, addition of 4-methyl-N-butylpyridinium tetrafluoroborate, instead of tert-butanol, increased the yield of the oxidation product several-fold.  相似文献   

2.
Imidazolidin-4-one is used as a recoverable organocatalyst for the asymmetric Diels-Alder reaction in the presence of catalytic amount of dicationic ionic liquid and trifluoroacetic acid as a co-catalyst. The Diels-Alder reaction between model substrate cyclopentadiene and crotonaldehyde gave the product in 95% conversion and 87% ee of the endo-product. The catalyst was shown better reusability when the 20 mol% of dicationic ionic liquid was used and catalyst was reused upto 5 cycles, conversion remains upto 3 recycles but ee of endo- 9 was slightly droped.  相似文献   

3.
Ionic liquids in the form of organic salts are being widely used as new solvent media. In this paper three positional isomers,o-amino benzoic acid,m-amino benzoic acid, andp-amino benzoic acids were separated with four different ionic liquids as mobile phase additives using high performance liquid chromatography (HPLC). The following ionic liquids were used: 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIm][BF4]), 1-ethyl-3-methylimidazolium methylsulfate ([EMIm][MS]), and 1-octyl-3-methylimidazolium methylsulfate ([OMIm][MS]). The effects of the alkyl group length on the imidazolium ring and its counterion, and the concentrations of the ionic liquids on the retention factors and resolutions of amino benzoic acid isomers were tested. The results of the separations with ionic liquids as the eluents were better than those without ionic liquids. Excellent separations of the three isomers were achieved using 2.0≈8.0 mM/L [OMIm][MS] and 1.0≈8.0 mM/L [EMIm][MS] as the eluent modifiers.  相似文献   

4.
The rat liver microsome-mediated mutagenecities of a series of N-nitrosodialkylamines and heterocyclic N-nitrosamines were determined in a liquid incubation system using Salmonella typhimurium TA1530. The influence on mutation frequency of the concentration of co-factors for mixed-function oxidase and composition and molarity of the buffer was investigated, using N-nitrosomorpholine as substrate. The mutagenicity of the N-nitros compounds in the liquid incubation system under uptimal reaction conditions at equimolar concentration was compared quantitatively with that obtained in an soft-agar incorporation assay.N-Nitrosoi-n-pentylamine and N-nitrosodi-n-butylamine showed no enzyme-mediated mutagenicity in the liquid incubation system, and metabolically activated N-nitroso-dimethylamine and N-nitroso-diethylamine showed negligible mutagenic activity in the soft-agar assays. In contrast with these results with the N-nitrosodialkylamines, the mutagenic effects of heterocyclic N-nitrosamines were similar in the liquid incubation system and in soft-agar incorporation assays. The heterocylic N-nitrosamines showed rat-liver microsome-mediated mutagenicity in the following descending order: N-nitrosomorpholine > N-nitrosopyrrolidine > N-nitrosopiperidine > N-nitroso-N′-methylpiperazine.  相似文献   

5.
The clear vibrational structure of fluorescence spectrum of β-carotene in the solvent is reported for the first time at room temperature. This finding is in good agreement with recently discovered covalent 3 1A g new carotenoid state. The fluorescence yield of β-carotene in ionic liquid (1-methyl-3-octyloxymethylimidazolium tetrafluoroborate) is around hundred times higher than in standard solvent n-hexane. The all-trans and 15-cis β-carotene fluorescence yields in ionic liquid are 1.96±0.03 and 2.53±0.03 %, respectively. The ionic liquid is a very useful tool for modelling photosynthetic system in situ. We present the electronic absorption data of β-carotene in ionic liquids (so called neoteric solvents) with special interest in the absorption changes as a function of temperature in the range 0–90 °C (273–363 K). Ionic liquids are also very good medium for temperature study, because they are not changing up to several hundred °C and also not evaporating during heating. The relationship between spectral characteristics of β-carotene in new generation solvents with increasing and decreasing temperature is evaluated. The energy value of the ionic state 1 1B u + of synthetic β-carotene in ionic liquids exhibits a linear and temperature reversible dependence on temperature up to 30 °C (303 K) and up to 40 °C (313 K) for 15-cis and all-trans β-carotenes, respectively. This is valid for both 0-0 and 0-1 transitions.  相似文献   

6.
Two human urinary metabolites of the industrial solvent N,N-dimethylformamide (DMF), N-hydroxymethyl-N-methylformamide (HMMF) and N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC), were assayed using a new analytical method (gas chromatography and thermionic sensitive detection). Clean-up of urine samples includes a liquid–liquid extraction step followed by a solid-phase extraction step to separate HMMF and AMCC from other urine components. During clean-up, AMCC is converted into ethyl-N-methylcarbamate (EMC), and during gas chromatography, HMMF is degraded in the injector to N-methylformamide (NMF). All the validation data necessary for a quantitative procedure are given. The method was applied to urine samples from workers exposed to DMF and from the general population. The results were confirmed by mass spectrometric determination. For this purpose a further liquid–liquid extraction step was introduced in the clean-up procedure. Background levels of AMCC in the general population were identified.  相似文献   

7.
The kinetics of the -chymotrypsin catalysed transesterification of N-acetyl-l-phenylalanine ethyl ester with 1-butanol and the competing hydrolysis were evaluated at fixed water activity in two ionic liquids and two non-ionic organic solvents. In most respects the four solvents behaved similarly. However, at a water activity of 0.33, higher catalytic activity was observed in the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide, than in the other solvents, and at aw=0.11 catalysis was only observed in this solvent.  相似文献   

8.
Aims: This work aimed to characterize microbial tolerance to 1‐ethyl‐3‐methylimidazolium acetate ([C2mim][OAc]), an ionic liquid that has emerged as a novel biomass pretreatment for lignocellulosic biomass. Methods and Results: Enrichment experiments performed using inocula treated with [C2mim][OAc] under solid and liquid cultivation yielded fungal populations dominated by Aspergilli. Ionic liquid‐tolerant Aspergillus isolates from these enrichments were capable of growing in a radial plate growth assay in the presence of 10% [C2mim][OAc]. When a [C2mim][OAc]‐tolerant Aspergillus fumigatus strain was grown in the presence of switchgrass, endoglucanases and xylanases were secreted that retained residual enzymatic activity in the presence of 20% [C2mim][OAc]. Conclusions: The results of the study suggest that tolerance to ionic liquids is a general property of the Aspergilli. Significance and Impact of the Study: Tolerance to an industrially important ionic liquid was discovered in a fungal genera that is widely used in biotechnology, including biomass deconstruction.  相似文献   

9.
In this study, an optically active diamine, N,N′-(pyromellitoyl)-bis{N-[4(4-aminophenoxy)phenyl]-2-(4-methyl)pentanamide} (1) containing amino acid l-leucine was prepared in three steps. The step-growth polymerization of this chiral diamine with several diisocyanates in room temperature ionic liquid (IL), 1,3-dipropylimidazolium bromide as an environmentally friendly solvent and in a volatile organic solvent, is investigated. The polymerization yields and inherent viscosities of the resulting poly(amide-ether-imide-urea)s are compared in both solvents. The results show that the IL to be the superior polymerization media. All of the obtained polymers exhibited good solubility in some polar aprotic organic solvents such as N,N-dimethyacetamide, N,N-dimethyformamide, dimethyl sulfoxide while thermal stability was not disturbed based on thermogravimetric analysis and differential scanning calorimetry experiments. X-ray diffraction analysis of polymers shows that they are amorphous. The observation of optical rotation confirms the optical activity of prepared polymers.  相似文献   

10.
Long/branched-chain polyamines are unique polycations found in thermophiles. The hyperthermophilic archaeon Thermococcus kodakarensis contains spermidine and a branched-chain polyamine, N4-bis(aminopropyl)spermidine, as major polyamines. The metabolic pathways associated with branched-chain polyamines remain unknown. Here, we used gas chromatography and liquid chromatography-tandem mass spectrometry analyses to identify a new acetylated polyamine, N4-bis(aminopropyl)-N1-acetylspermidine, from T. kodakarensis; this polyamine was not found in other micro-organisms. The amounts of branched-chain polyamine and its acetylated form increased with temperature, indicating that branched-chain polyamines are important for growth at higher temperatures. The amount of quaternary acetylated polyamine produced was associated with the amount of N4-bis(aminopropyl)spermidine in the cell. The ratio of acetylated to non-acetylated forms was higher in the stationary phase than in the logarithmic growth phase under high-temperature stress condition.  相似文献   

11.
The water activity equilibration over saturated salt solutions was monitored in the ionic liquid 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide and in two organic solvents (methyl tert-butylether and n-hexane). Water uptake by the ionic liquid was comparable to that in polar organic solvents. Furthermore, the kinetic resolution of (R,S)-1-phenylethanol catalysed by a lipase from Pseudomonas sp. had a higher selectivity in the ionic liquid at low water activities (aW<0.53) than in methyl tert-butylether. At 60–90 °C E-values of about E150 occured in the ionic liquid, while the enantioselectivity drops to values of 4 in methyl tert-butylether at the same temperatures.  相似文献   

12.
The inhibition mechanism of a water-miscible ionic liquid, N-butyl-3-methypyridinium tetrafluoroborate ([BMPy][BF4]), on the catalysis of horseradish peroxidase (HRP) was investigated. The K m value for the oxidation of guaiacol (2-methoxyphenol) with H2O2 catalyzed by HRP increased from 2.8 mM in 100% water to 12.6 mM in 25% (v/v) [BMPy][BF4]. This increase of K m by the ionic liquid was elucidated to be caused by the strong stabilization of the ground state of guaiacol by the ionic liquid. On the contrary, the k cat value for the HRP-catalyzed reaction decreased from 13.8/sec in 100% water to 6.7/sec in 25% (v/v) [BMPy][BF4]. Such decrease of k cat value of HRP catalysis by the increasing content of [BMPy][BF4] was described using the noncompetitive inhibition of the enzyme by the ionic liquid. The value of the inhibition constant of [BMPy][BF4] was 1.48 M indicating that the ionic liquid exerts a weak noncompetitive inhibition effect on the HRP catalysis.  相似文献   

13.
The activity of three different lipases, a glycosidase and a protease in ionic liquids has been studied. Ambient temperature ionic liquids are a new class of solvents that are nonvolatile and nonflammable and thus an interesting alternative to classical organic solvents. Monitoring the synthesis of a simple ester, all lipases were found to exhibit both excellent activity and stability in the non-polar ionic liquid 1-butyl-3-methylimidazohum hexaflurophosphate ([bmin][PF6], 1). Furthermore, β-galactosidase from E. coli and the Subtilisin protease SavinaseTM were both found to exhibit a hydrolytic activity in a 50% aqueous solution of the water-miscible ionic liquid 1-butyl-3-methyhmidazoUum tetra-fluoroborate ([bmin][BF4], 2) comparable to the activity observed in 50% aqueous solutions of ethanol and acetonitrile.  相似文献   

14.
Biofilms are problematic in health and industry because they are resistant to various antimicrobial treatments. Ionic liquids are a novel class of low temperature liquid salts consisting of discrete anions and cations, and have attracted considerable interest as safer alternatives to organic solvents. Ionic liquids have interesting antimicrobial properties and some could find use in the development of novel antiseptics, biocides and antifouling agents. The antimicrobial and antibiofilm activity of 1-dodecyl-3-methylimiazolium iodide ([C12MIM]I) was studied using the clinically important bacterial pathogens, Staphylococcus aureus SAV329 and Pseudomonas aeruginosa PAO1. The ionic liquid increased cell membrane permeability in both S. aureus and P. aeruginosa cells and impaired their growth, attachment and biofilm development. The ionic liquid exhibited superior antimicrobial and antibiofilm activity against the Gram-positive S. aureus compared to the Gram-negative P. aeruginosa cells. BacLight? staining and confocal microscope imaging confirmed that the ionic liquid treatment increased the cell membrane permeability of both the Gram-positive and Gram-negative bacteria. In addition, the antimicrobial and antibiofilm properties of [C12MIM]I were similar or superior to those of cetyltrimethylammonium bromide (CTAB), a well-known cationic surfactant. It is concluded that the ionic liquid induced damage to bacterial cells by disrupting cell membrane, leading to inhibition of growth and biofilm formation. Overall, the results indicate that the ionic liquid 1-dodecyl-3-methylimiazolium iodide was effective in preventing S. aureus and P. aeruginosa biofilms and could have applications in the control of bacterial biofilms.  相似文献   

15.
The system size dependence of the thermodynamic properties of electrolytic systems in "Spherical Boundary Conditions" (SBC) have been examined in this work. Coulombic systems were simulated with different system sizes (N ) for a wide range of concentrations, different ionic charges and solvent permittivities. The effects of system size upon the mean internal energy ?U? and mean ionic activity coefficient ?γ ±? values were determined. Our results indicated that there was no dependence of the thermodynamic properties upon system size in the non-Euclidean geometry. Different methods of extrapolating the thermodynamic properties to infinite numbers were studied in detail. In contrast to the Euclidean geometry, the method of extrapolating ?U? or ?γ ±? versus N -1, N -2/3 and N -1/3 was not statistically justifiable nor advantageous. Therefore, SBC is well suited to simulating systems involving long-range electrostatic interactions because the results do not dependent upon system size.  相似文献   

16.
A biphasic process design is often applied in whole-cell biocatalysis if substrate and product have low water solubility, are unstable in water or toxic for the biocatalyst. Some water immiscible ionic liquids (ILs) with adequate distribution coefficients have already been applied successfully as second liquid phase, which acts as a substrate reservoir and in situ extractant for the product. In this work, 12 new ILs were evaluated with respect to their applicability in biphasic asymmetric reductions of prochiral ketones in comparison to 9 already published ILs. The ILs under study are composed of seven different cations and three different anions. Recombinant Escherichia coli was used as whole-cell biocatalyst overexpressing the genes of a Lactobacillus brevis alcohol dehydrogenase (LB-ADH) and a Candida boidinii formate dehydrogenase (CB-FDH) for cofactor regeneration. Best results were achieved if ionic liquids with [PF6]- and [NTF]-anions were applied, whereas [FAP]-ILs showed minor qualification, e.g., the use of [HMPL][NTF] as second liquid phase for asymmetric synthesis of (R)-2-octanol resulted in a space–time-yield of 180 g L−1 d−1, a chemical yield of 95% and an enantiomeric excess of 99.7% in a simple batch process.  相似文献   

17.
Abstract

A new ionic liquid was synthesized by the reaction of caprolactam with salicylic acid (CL-SA) and characterized by analysis of spectroscopic and DSC data. The optimized geometry and the electrostatic potential map of CL-SA were calculated with DFT method using the wb97xd/6-31++G(d,p) level of theory. Molecular docking study of the CL-SA was carried out to clarify the probable binding modes between the title compound and DNA and COX-2 and TOPII enzymes. In silico ADMET study was also performed for predicting pharmacokinetic and toxicity profile of the synthesized ionic liquid which expressed good oral drug-like behavior and non-toxic nature. It was revealed that the compound has a potential to become a lead molecule in drug discovery process.

Communicated by Ramaswamy H. Sarma  相似文献   

18.
Ionic liquids have recognized as a solvent for Geotrichum candidum-catalyzed optical resolution and/or deracemization of racemic secondary alcohols, giving optically active alcohols. The immobilized Geotrichum candidum proceeded the enantioselective oxidation of alcohols, producing chiral alcohols in an ionic liquid. Further, deracemization of racemic alcohols was proceeded to give the corresponding chiral alcohols in high yield with excellent stereoselectivity by the Geotrichum candidum–NaBH4 system in the mixture of MES buffer solution and ionic liquid.  相似文献   

19.
Lithium‐rich layered oxides (LRLOs) exhibit specific capacities above 250 mAh g?1, i.e., higher than any of the commercially employed lithium‐ion‐positive electrode materials. Such high capacities result in high specific energies, meeting the tough requirements for electric vehicle applications. However, LRLOs generally suffer from severe capacity and voltage fading, originating from undesired structural transformations during cycling. Herein, the eco‐friendly, cobalt‐free Li1.2Ni0.2Mn0.6O2 (LRNM), offering a specific energy above 800 Wh kg?1 at 0.1 C, is investigated in combination with a lithium metal anode and a room temperature ionic liquid‐based electrolyte, i.e., lithium bis(trifluoromethanesulfonyl)imide and N‐butyl‐N‐methylpyrrolidinium bis(fluorosulfonyl)imide. As evidenced by electrochemical performance and high‐resolution transmission electron microscopy, X‐ray photoelectron spectroscopy, and online differential electrochemical mass spectrometry characterization, this electrolyte is capable of suppressing the structural transformation of the positive electrode material, resulting in enhanced cycling stability compared to conventional carbonate‐based electrolytes. Practically, the capacity and voltage fading are significantly limited to only 19% and 3% (i.e., lower than 0.2 mV per cycle), respectively, after 500 cycles. Finally, the beneficial effect of the ionic liquid‐based electrolyte is validated in lithium‐ion cells employing LRNM and Li4Ti5O12. These cells achieve a promising capacity retention of 80% after 500 cycles at 1 C.  相似文献   

20.
The methanolysis of soybean oil to produce a fatty acid methyl ester (ME, i.e., biodiesel fuel) was catalyzed by lipase-producing filamentous fungi immobilized on biomass support particles (BSPs) as a whole-cell biocatalyst in the presence of ionic liquids. We used four types of whole-cell biocatalysts: wild-type Rhizopus oryzae producing triacylglycerol lipase (w-ROL), recombinant Aspergillus oryzae expressing Fusarium heterosporum lipase (r-FHL), Candida antarctica lipase B (r-CALB), and mono- and diacylglycerol lipase from A. oryzae (r-mdlB). w-ROL gave the high yield of fatty acid methyl ester (ME) in ionic liquid [Emim][BF4] or [Bmim][BF4] biphasic systems following a 24 h reaction. While lipases are known to be severely deactivated by an excess amount of methanol (e.g. 1.5 Mequiv. of methanol against oil) in a conventional system, methanolysis successfully proceeded even with a methanol/oil ratio of 4 in the ionic liquid biphasic system, where the ionic liquids would work as a reservoir of methanol to suppress the enzyme deactivation. When only w-ROL was used as a biocatalyst for methanolysis, unreacted mono-glyceride remained due to the 1,3-positional specificity of R. oryzae lipase. High ME conversion was attained by the combined use of two types of whole-cell biocatalysts, w-ROL and r-mdlB. In a stability test, the activity of w-ROL was reduced to one-third of its original value after incubation in [Bmim][BF4] for 72 h. The stability of w-ROL in [Bmim][BF4] was greatly enhanced by cross-linking the biocatalyst with glutaraldehyde. The present study demonstrated that ionic liquids are promising candidates for use as the second solvent in biodiesel fuel production by whole-cell biocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号