首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comprised mainly of monocytes and tissue macrophages, the reticuloendothelial system (RES) plays two major roles in iron metabolism: it recycles iron from senescent red blood cells and it serves as a large storage depot for excess iron. Although iron recycling by the RES represents the largest pathway of iron efflux in the body, the precise mechanisms involved have remained elusive. However, studies characterizing the function and regulation of Nramp1, DMT1, HFE, FPN1, CD163, and hepcidin are rapidly expanding our knowledge of the molecular aspects of RE iron handling. This review summarizes fundamental physiological and biochemical aspects of iron metabolism in the RES and focuses on how recent studies have advanced our understanding of these areas. Also discussed are novel insights into the molecular mechanisms contributing to the abnormal RE iron metabolism characteristic of hereditary hemochromatosis and the anemia of chronic disease.  相似文献   

2.
The roles of iron in health and disease   总被引:7,自引:0,他引:7  
Iron is vital for almost all living organisms by participating in a wide variety of metabolic processes, including oxygen transport, DNA synthesis, and electron transport. However, iron concentrations in body tissues must be tightly regulated because excessive iron leads to tissue damage, as a result of formation of free radicals. Disorders of iron metabolism are among the most common diseases of humans and encompass a broad spectrum of diseases with diverse clinical manifestations, ranging from anemia to iron overload and, possibly, to neurodegenerative diseases. The molecular understanding of iron regulation in the body is critical in identifying the underlying causes for each disease and in providing proper diagnosis and treatments. Recent advances in genetics, molecular biology and biochemistry of iron metabolism have assisted in elucidating the molecular mechanisms of iron homeostasis. The coordinate control of iron uptake and storage is tightly regulated by the feedback system of iron responsive element-containing gene products and iron regulatory proteins that modulate the expression levels of the genes involved in iron metabolism. Recent identification and characterization of the hemochromatosis protein HFE, the iron importer Nramp2, the iron exporter ferroportin1, and the second transferrin-binding and -transport protein transferrin receptor 2, have demonstrated their important roles in maintaining body's iron homeostasis. Functional studies of these gene products have expanded our knowledge at the molecular level about the pathways of iron metabolism and have provided valuable insight into the defects of iron metabolism disorders. In addition, a variety of animal models have implemented the identification of many genetic defects that lead to abnormal iron homeostasis and have provided crucial clinical information about the pathophysiology of iron disorders. In this review, we discuss the latest progress in studies of iron metabolism and our current understanding of the molecular mechanisms of iron absorption, transport, utilization, and storage. Finally, we will discuss the clinical presentations of iron metabolism disorders, including secondary iron disorders that are either associated with or the result of abnormal iron accumulation.  相似文献   

3.
4.
Excess iron is tightly associated with tumorigenesis in multiple human cancer types through a variety of mechanisms including catalyzing the formation of mutagenic hydroxyl radicals, regulating DNA replication, repair and cell cycle progression, affecting signal transduction in cancer cells, and acting as an essential nutrient for proliferating tumor cells. Thus, multiple therapeutic strategies based on iron deprivation have been developed in cancer therapy. During the past few years, our understanding of genetic association and molecular mechanisms between iron and tumorigenesis has expanded enormously. In this review, we briefly summarize iron homeostasis in mammals, and discuss recent progresses in understanding the aberrant iron metabolism in numerous cancer types, with a focus on studies revealing altered signal transduction in cancer cells.  相似文献   

5.
David H. Haile 《Biometals》2003,16(1):225-241
Acute and chronic inflammatory states are characterized by changes in body iron metabolism. These changes include a drop in serum iron, an increase in the rate of plasma iron disappearance, a decline in the rate of plasma iron turnover, reticuloendothelial system (RES) cell iron sequestration and a decline in intestinal iron absorption. This response is elicited by a variety of metabolic conditions and acute bacterial infections, especially gram-negative bacteria, and by experimental mediators of inflammation such as endotoxin and turpentine. These changes in iron metabolism contribute to the development of the anemia of chronic diseases. SLC11A3 (aka MTP1, ferroportin 1, IREG1) is a metal transporter that exports iron from the cytosol of cells and was initially identified as the duodenal epithelial basolateral iron transporter. Recent identification of a MTP1 mutation leading to hemochromatosis in man adds further weight to the hypothesis that MTP1 is involved in iron homeostasis. RES cells are responsible for the recycling of iron from the breakdown of heme from senescent erythrocytes and MTP1 has been hypothesized to be the key iron exporter in these cells. Supporting this hypothesis is the observation that MTP1 is expressed in the RES macrophages of the spleen, Kupffer cells, bone marrow and lymph node histiocytes, mesangial cells, brain microglial cells. In a mouse (C57/Bl6) model of lipopolysaccharide (LPS) induced acute inflammation, MTP1 expression in the cells of the RES is regulated by acute inflammation. Immunohistochemical staining of tissues, using an anti-MTP1 antibody, of mice given parenteral injections of LPS demonstrated down-regulation of MTP1 expression in the RES cells of the spleen and liver and also in the duodenal epithelial cells compared to control animals. Western blotting of total liver and spleen lysates confirmed the decline in MTP1 protein expression induced by LPS. In addition, RT-PCR analysis showed that LPS treatment also resulted in a decline in MTP1 mRNA in spleen, liver and duodenum compared to controls. One clue to the molecular signaling mechanism for MTP1 down-regulation by LPS comes from the study of the C3H/HeJ mouse, which lacks a functional LPS receptor, toll-like receptor 4 (TLR4). C3H/HeJ mice are resistant to the toxic and hypoferraemic effects of LPS. Similarly, a down-regulation of MTP1 in response to LPS in the C3H/HeJ mice was not observed. This finding indicates that the down-regulation of MTP1 by LPS requires signaling through TLR4. Despite resistance to LPS, treatment of C3H/HeJ mice with turpentine, an inducer of sterile inflammation, for a period of 24 hours resulted in down-regulation of MTP1 expression in the spleen. These data indicate that LPS mediated down-regulation of MTP1 requires a functional TLR4, but that there are non-TLR4 dependent mechanisms for the down-regulation of MTP1 by inflammatory stimuli. In vitro treatment of mouse adherent splenocytes with 5 ug ml of LPS also resulted in down-regulation of MTP1 mRNA. This in vitro down-regulation was not abrogated by co-treatment of cells with pyrrolidinedithiocarbamate (PDTC), a well-characterized inhibitor of NF-KB activation or anti-tumor necrosis factor-a antibodies. In addition, in vitro treatment of mouse splenocytes with recombinant TNF- did not result in down-regulation of MTP1 mRNA. The lack of antagonism between LPS and PDTC and the lack of an effect of TNF- in vitro indicates that NF-B activation may not be required for MTP1 mRNA down-regulation. This inflammation-mediated down-regulation of MTP1 expression in the RES may be a component responsible for iron sequestration in the RES in both acute and chronic inflammatory states.  相似文献   

6.
7.
Sequencing of the genomes of Drosophila melanogaster, Anopheles gambiae, Apis mellifera, and Bombyx mori provided an opportunity to examine the diversity and organization of genes encoding insect transferrins (Tsf) and ferritins. Information obtained from the genomes significantly advances our knowledge of these major players in insect iron metabolism and complements the results of molecular studies on their temporal, spatial, and inducible expression pattern and regulatory mechanisms conducted in diverse insect species. Analysis of genes encoding new members of the Tsf family and non-secreted ferritin subunits allows making preliminary hypotheses about their possible functions and opens possibilities to study lesser-known aspects of insect iron homeostasis. Proteomic and gene expression studies that followed the whole genome sequencing quickly contribute to defining or better understanding of the important and diverse biological roles of Tsf and ferritin, particularly their involvement in insect's defenses against oxidative stress and infection.  相似文献   

8.
Acute and chronic inflammation cause many changes in total body iron metabolism including the sequestration of iron in phagocytic cells of the reticuloendothelial system. This change in iron metabolism contributes to the development of the anemia of inflammation. MTP1, the duodenal enterocyte basolateral iron exporter, is also expressed in the cells of the reticuloendothelial system (RES) and is likely to be involved in iron recycling of these cells. In this study, we use a lipopolysaccharide model of the acute inflammation in the mouse and demonstrate that MTP1 expression in RES cells of the spleen, liver, and bone marrow is down-regulated by inflammation. The down-regulation of splenic expression of MTP1 by inflammation was also observed in a Leishmania donovani model of chronic infection. The response of MTP1 to lipopolysaccharide (LPS) requires signaling through the LPS receptor, Toll-like receptor 4 (TLR4). In mice lacking TLR4, MTP1 expression is not altered in response to LPS. In addition, mice lacking tumor necrosis factor-receptor 1a respond appropriately to LPS with down-regulation of MTP1, despite hyporesponsiveness to tumor necrosis factor-alpha signaling, suggesting that this cytokine may not be required for the LPS effect. We hypothesize that the iron sequestration in the RES system that accompanies inflammation is because of down-regulation of MTP1.  相似文献   

9.
In the last 20 years, several new genes and proteins involved in iron metabolism in eukaryotes, particularly related to pathological states both in animal models and in humans have been identified, and we are now starting to unveil at the molecular level the mechanisms of iron absorption, the regulation of iron transport and the homeostatic balancing processes. In this review, we will briefly outline the general scheme of iron metabolism in humans and then focus our attention on the cellular iron export system formed by the permease ferroportin and the ferroxidase ceruloplasmin. We will finally summarize data on the role of the iron binding protein lactoferrin on the regulation of the ferroportin/ceruloplasmin couple and of other proteins involved in iron homeostasis in inflamed human macrophages.  相似文献   

10.
Chemistry and biology of eukaryotic iron metabolism   总被引:13,自引:0,他引:13  
With rare exceptions, virtually all studied organisms from Archaea to man are dependent on iron for survival. Despite the ubiquitous distribution and abundance of iron in the biosphere, iron-dependent life must contend with the paradoxical hazards of iron deficiency and iron overload, each with its serious or fatal consequences. Homeostatic mechanisms regulating the absorption, transport, storage and mobilization of cellular iron are therefore of critical importance in iron metabolism, and a rich biology and chemistry underlie all of these mechanisms. A coherent understanding of that biology and chemistry is now rapidly emerging. In this review we will emphasize discoveries of the past decade, which have brought a revolution to the understanding of the molecular events in iron metabolism. Of central importance has been the discovery of new proteins carrying out functions previously suspected but not understood or, more interestingly, unsuspected and surprising. Parallel discoveries have delineated regulatory mechanisms controlling the expression of proteins long known--the transferrin receptor and ferritin--as well as proteins new to the scene of iron metabolism and its homeostatic control. These proteins include the iron regulatory proteins (IRPs 1 and 2), a variety of ferrireductases in yeast an mammalian cells, membrane transporters (DMT1 and ferroportin 1), a multicopper ferroxidase involved in iron export from cells (hephaestin), and regulators of mitochondrial iron balance (frataxin and MFT). Experimental models, making use of organisms from yeast through the zebrafish to rodents have asserted their power in elucidating normal iron metabolism, as well as its genetic disorders and their underlying molecular defects. Iron absorption, previously poorly understood, is now a fruitful subject for research and well on its way to detailed elucidation. The long-sought hemochromatosis gene has been found, and active research is underway to determine how its aberrant functioning results in disease that is easily controlled but lethal when untreated. A surprising connection between iron metabolism and Friedreich's ataxia has been uncovered. It is no exaggeration to say that the new understanding of iron metabolism in health and disease has been explosive, and that what is past is likely to be prologue to what is ahead.  相似文献   

11.
Heme serves as a co-factor in proteins involved in fundamental biological processes including oxidative metabolism, oxygen storage and transport, signal transduction and drug metabolism. In addition, heme is important for systemic iron homeostasis in mammals. Heme has important regulatory roles in cell biology, yet excessive levels of intracellular heme are toxic; thus, mechanisms have evolved to control the acquisition, synthesis, catabolism and expulsion of cellular heme. Recently, a number of transporters of heme and heme synthesis intermediates have been described. Here we review aspects of heme metabolism and discuss our current understanding of heme transporters, with emphasis on the function of the cell-surface heme exporter, FLVCR. Knockdown of Flvcr in mice leads to both defective erythropoiesis and disturbed systemic iron homeostasis, underscoring the critical role of heme transporters in mammalian physiology.  相似文献   

12.
Resistance exercise (RE) training, designed to induce hypertrophy, strives for optimal activation of anabolic and myogenic mechanisms to increase myofiber size. Clearly, activation of these mechanisms must precede skeletal muscle growth. Most mechanistic studies of RE have involved analysis of outcome variables after many training sessions. This study measured molecular level responses to RE on a scale of hours to establish a time course for the activation of myogenic mechanisms. Muscle biopsy samples were collected from nine subjects before and after acute bouts of RE. The response to a single bout was assessed at 12 and 24 h postexercise. Further samples were obtained 24 and 72 h after a second exercise bout. RE was induced by neuromuscular electrical stimulation to generate maximal isometric contractions in the muscle of interest. A single RE bout resulted in increased levels of mRNA for IGF binding protein-4 (84%), MyoD (83%), myogenin (approximately 3-fold), cyclin D1 (50%), and p21-Waf1 (16-fold), and a transient decrease in IGF-I mRNA (46%). A temporally conserved, significant correlation between myogenin and p21 mRNA was observed (r = 0.70, P < or = 0.02). The mRNAs for mechano-growth factor, IGF binding protein-5, and the IGF-I receptor were unchanged by RE. Total skeletal muscle RNA was increased 72 h after the second serial bout of RE. These results indicate that molecular adaptations of skeletal muscle to loading respond in a very short time. This approach should provide insights on the mechanisms that modulate adaptation to RE and may be useful in evaluating RE training protocol variables with high temporal resolution.  相似文献   

13.
Helicobacter pylori-related iron deficiency anemia: a review   总被引:10,自引:1,他引:9  
Several clinical reports have demonstrated that Helicobacter pylori gastric infection has emerged as a new cause of refractory iron deficiency anemia, unresponsive to iron therapy, and not attributable to usual causes such as intestinal losses or poor intake, malabsorption or diversion of iron in the reticulo-endothelial system. Although the interaction between infection and iron metabolism is now well consolidated, our understanding of the pathogenetic mechanism underlying the anemia is still wanting. Microbiological and ferrokinetic studies seem to suggest that Helicobacter pylori infected antrum could act as a sequestering focus for serum iron by means of outer membrane receptors of the bacterium, that in vitro are able to capture and utilize for growth iron from human lactoferrin. The proposed hypothesis does not answer why this complication is such a rare disease outcome in a common human infection but it may be used as a template for further controlled studies to determine the mechanisms of this atypical, medically important putative sequelae of H. pylori infection.  相似文献   

14.
Before cyanobacteria invented oxygenic photosynthesis and O(2) and H(2)O began to cycle between respiration and photosynthesis, redox cycles between other elements were used to sustain microbial metabolism on a global scale. Today these cycles continue to occur in more specialized niches. In this review we focus on the bioenergetic aspects of one of these cycles - the iron cycle - because iron presents unique and fascinating challenges for cells that use it for energy. Although iron is an important nutrient for nearly all life forms, we restrict our discussion to energy-yielding pathways that use ferrous iron [Fe(II)] as an electron donor or ferric iron [Fe(III)] as an electron acceptor. We briefly review general concepts in bioenergetics, focusing on what is known about the mechanisms of electron transfer in Fe(II)-oxidizing and Fe(III)-reducing bacteria, and highlight aspects of their bioenergetic pathways that are poorly understood.  相似文献   

15.
16.
17.
It is becoming increasingly clear that RNA molecules play a major role in all aspects of metabolism. The conformational state and stability of RNA are controlled by RNA remodeling proteins, which are ubiquitous motor proteins in the cell. Here, we review advances in our understanding of the structure and function of three major structural families of RNA remodeling proteins, the hexameric ring proteins, the processive monomeric RNA translocase/helicases, and the functionally diverse DEAD-box remodeling proteins. New studies have revealed molecular mechanisms for coupling between ATP hydrolysis and unwinding, the physical basis for regulatory control by cofactors, and novel functions for RNA remodeling proteins.  相似文献   

18.
19.
The copper-iron chronicles: The story of an intimate relationship   总被引:7,自引:0,他引:7  
Paul L. Fox 《Biometals》2003,16(1):9-40
During the last decade there has been a surge of interest and activity in exploring the metabolic links between copper and iron. This review describes more than a century and a half of effort that has led to our current understanding. Particular attention is given to the early events since these are less well-known and appreciated. The landmark 1928 paper of Hart, Elvehjem and coworkers is generally given credit for the start of the copper/iron field, and specifically for the discovery of the role of copper in forming hemoglobin and in overcoming anemia. However, some credit for the ideas, observations, and experiments should be shared with several investigators of the previous century. These scientists and physicians were primarily motivated to find the causes and cures of chlorosis, a common form of anemia at the time. From his chemical determination of copper in red blood cells in 1848, Millon proposed a form of chlorosis due to copper deficiency. Likewise, Pécholier and Saint-Pierre, observing the robust health of young women working in copper factories, concluded that copper was helpful in preventing and overcoming chlorosis. The first direct experimental evidence for the theory was provided by the Italian physician Mendini, who in 1862 reported that supplementation of the diet with copper salts overcame chlorosis in young women. In the 1890s Cervello and his students in Italy, using semi-quantitative hematological measurements, confirmed the beneficial effects of copper on anemia both in patients and in animal models. There was nearly a 30-year period of inactivity, but the decade of the 1930s saw renewed interest and exciting developments in the field. The Elvehjem report of 1928 was quickly verified and extended by multiple laboratories on four continents. In the 1950s and 1960s Wintrobe and Cartwright and their colleagues localized, and started to systematically evaluate, the potential sites at which copper was likely to effect iron for hemoglobin synthesis, namely, intestinal absorption, release from storage, and cellular utilization during synthesis. The copper/iron connection also has a `flip-side', i.e., iron status can influence copper metabolism as first described by Warburg and Krebs in 1927. Thus, there are opportunities for feedback mechanisms at the cellular and physiological level that are not yet understood. The evaluation of these processes continues to this day, aided by modern molecular and genetic approaches. Studies of two copper proteins, ceruloplasmin and its recently discovered homologue hephaestin, have provided two molecular links connecting the pathways of copper and iron metabolism. The recent identification of other proteins of iron and copper metabolism, for example, copper ATPases and the membrane iron transporters DCT1/DMT1/Nramp2 and IREG1/MTP1/ferroportin1, are likely to fill crucial pathway gaps. The ongoing discovery of genes and gene mutations involved in the metabolism of copper and iron provides an important key to a deeper understanding of the connections between the pathways, and their physiological and pathological consequences. It is hoped that this historical review, by illuminating the complex paths that have led to the current state of knowledge, will contribute to our appreciation, our understanding, and perhaps our continued discovery of the connections between copper and iron.  相似文献   

20.
Iron is an essential inorganic element for various cellular events. It is directly associated with cell proliferation and growth; therefore, it is expected that iron metabolism is altered in tumor cells which usually have rapid growth rates. The studies on iron metabolism of tumor cells have shown that tumor cells necessitated higher concentrations of iron and the genes of iron uptake proteins were highly over-expressed. However, there are limited number of studies on overall iron metabolism in drug-resistant tumor cells. In this article, we evaluated the studies reporting the relationship between drug resistance and iron metabolism and the utilization of this knowledge for the reversal of drug resistance. Also, the studies on iron-related cell death mechanism, ferroptosis, and its relation to drug resistance were reviewed. We focus on the importance of iron metabolism in drug-resistant cancer cells and how alterations in iron metabolism participate in drug-resistant phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号