首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the detachment rates of various microbial species from the aerobic and anoxic biofilms in a circulating fluidized bed bioreactor (CFBB) with two entirely separate aerobic and anoxic beds were investigated. Overall detachment rate coefficients for biomass, determined on the basis of volatile suspended solids (VSS), glucose and protein as well as for specific microbial groups, i.e., for nitrifiers, denitrifiers, and phosphorous accumulating organisms (PAOs), were established. Biomass detachment rates were found to increase with biomass attachment on carrier media in both beds. The detachment rate coefficients based on VSS were significantly affected by shear stress, whereas for protein, glucose and specific microbial groups, no significant effect of shear stress was observed. High detachment rates were observed for the more porous biofilm structure. The presence of nitrifiers in the anoxic biofilm and denitrifiers in the aerobic biofilm was established by the specific activity measurements. Detachment rates of PAOs in aerobic and anoxic biofilms were evaluated.  相似文献   

2.
One of the least understood processes affecting biofilm accumulation is detachment. Detachment is the removal of cells and cell products from an established biofilm and subsequent entrainment in the bulk liquid. The goal of this research was to determine the effects of shear stress and substrate loading rate on the rate of biofilm detachment.Monopopulation Pseudomonas aeruginosa and undefined mixed population biofilms were grown on glucose in a RotoTorque biofilm reactor. Three levels of shear stress and substrate loading rate were used to determine their effects on the rate of detachment. Suspended cell concentrations were monitored to determine detachment rates, while other variables were measured to determine their influence on the detachment rate. Results indicate that detachment rate is directly related to biofilm growth rate and that factors which limit growth rate will also limit detachment rate. No significant influence of shear on detachment rate was observed.A new kinetic expression that incorporates substrate utilization rate, yield, and biofilm thickness was compared to published detachment expressions and gives a better correlation of data obtained both in this research and from previous research projects, for both mono- and mixed-population biofilms. (c) John Wiley & Sons, Inc.  相似文献   

3.
Summary This paper describes two new monoclonal antibodies reactive with human specific type IV collagen epitopes in frozen as well as routinely fixed and processed tissue sections. The antibodies (1042 and 1043) were raised against human placental type IV collagen and were shown by immunoblotting and ELISA tests to react exclusively with type IV collagen determinants. Extensive immunohistochemical survey studies on panels of tissues from various species, using unfixed cryosat sections, demonstrated that antibody 1042 reacted only with human type IV collagen whereas antibody 1043 in addition reacted with rabbit type IV collagen. All tissues showed homogeneous staining of the basement membrane, indicating that the detected epitopes did not show organ-specific distribution.Tissue processing protocols for using these monoclonal antibodies on routinely processed paraffin embedded tissues were developed. It was found that whereas polyclonal antitype IV collagen antisera required pepsin digestion, our monoclonal antibodies required pronase or papain digestion to restore type IV collagen immunoreactivity in paraffin sections.It is concluded that these monoclonal anti-type IV collagen antibodies detect species specific epitopes which can be detected in routinely processed paraffin embedded tissues after appropriate enzyme pretreatment.  相似文献   

4.
This paper describes two new monoclonal antibodies reactive with human specific type IV collagen epitopes in frozen as well as routinely fixed and processed tissue sections. The antibodies (1042 and 1043) were raised against human placental type IV collagen and were shown by immunoblotting and ELISA tests to react exclusively with type IV collagen determinants. Extensive immunohistochemical survey studies on panels of tissues from various species, using unfixed cryostat sections, demonstrated that antibody 1042 reacted only with human type IV collagen whereas antibody 1043 in addition reacted with rabbit type IV collagen. All tissues showed homogeneous staining of the basement membrane, indicating that the detected epitopes did not show organ-specific distribution. Tissue processing protocols for using these monoclonal antibodies on routinely processed paraffin embedded tissues were developed. It was found that whereas polyclonal anti-type IV collage antisera required pepsin digestion, our monoclonal antibodies required pronase or papain digestion to restore type IV collagen immunoreactivity in paraffin sections. It is concluded that these monoclonal anti-type IV collagen antibodies detect species specific epitopes which can be detected in routinely processed paraffin embedded tissues after appropriate enzyme pretreatment.  相似文献   

5.
Single-molecule experiments indicate that integrin affinity is cation-type-dependent, but in spread cells integrins are engaged in complex focal adhesions (FAs), which can also regulate affinity. To better understand cation-type-dependent adhesion in fully spread cells, we investigated attachment strength by application of external shear. While cell attachment strength is indeed modulated by cations, the regulation of integrin-mediated adhesion is also exceedingly complex, cell specific, and niche dependent. In the presence of magnesium only, fibroblasts and fibrosarcoma cells remodel their cytoskeleton to align in the direction of applied shear in an α5-integrin/fibronectin-dependent manner, which allows them to withstand higher shear. In the presence of calcium or on collagen in modest shear, fibroblasts undergo piecewise detachment but fibrosarcoma cells exhibit increased attachment strength. These data augment the current understanding of force-mediated detachment by suggesting a dynamic interplay in situ between cell adhesion and integrins depending on local niche cation conditions.  相似文献   

6.
7.
In this study a simple analytical technique that determines the active biomass in a sample capable of degrading specific substrates anaerobically was developed and used to measure first-order detachment rate coefficients of acetate and phenol utilizing organisms. Different detachment rate coefficients were measured for the two microbial populations. A general relationship between the detachment rate coefficients and biomass accumulation was developed. The detachment rate coefficient was found to increase sharply after a certain biomass accumulation until it reaches a maximum, after which it decreases continuously with increasing biomass until it levels off at a constant value independent of biomass. Detachment rate coefficients measured in different reactors, operating at different conditions with respect to loading, biological SRT, and attachment media particle size, were in close agreement with each other after being normalized to the shear stress and daily methane production rate per unit biofilm area.  相似文献   

8.
Using Dictyostelium discoideum as a model organism of specific and nonspecific adhesion, we studied the kinetics of shear flow-induced cell detachment. For a given cell, detachment occurs for values of the applied hydrodynamic stress above a threshold. Cells are removed from the substrate with an apparent first-order rate constant that strongly depends on the applied stress. The threshold stress depends on cell size and physicochemical properties of the substrate, but is not affected by depolymerization of the actin and tubulin cytoskeleton. In contrast, the kinetics of cell detachment is almost independent of cell size, but is strongly affected by a modification of the substrate and the presence of an intact actin cytoskeleton. These results are interpreted in the framework of a peeling model. The threshold stress and the cell-detachment rate measure the local equilibrium energy and the dissociation rate constant of the adhesion bridges, respectively.  相似文献   

9.
The location of the epitopes for monoclonal antibodies against chicken type IV and type V collagens were directly determined in the electron microscope after rotary shadowing of antibody/collagen mixtures. Three monoclonal antibodies against type IV collagen were examined, each one of which was previously demonstrated to be specific for only one of the three pepsin-resistant fragments of the molecule. The three native fragments were designated (F1)2F2, F3, and 7S, and the antibodies that specifically recognize each fragment were called, respectively, IA8 , IIB12 , and ID2 . By electron microscopy, monoclonal antibody IA8 recognized an epitope located in the center of fragment (F1)2F2 and in tetramers of type IV collagen at a distance of 288 nm from the 7S domain, the region of overlap of four type IV molecules. Monoclonal antibody IIB12 , in contrast, recognized an epitope located only 73 nm from the 7S domain. This result therefore provides direct visual evidence that the F3 fragment is located closest to the 7S domain and the order of the fragments must be 7S-F3-(F1)2F2. The epitope for antibody ID2 was located in the overlap region of the 7S domain, and often several antibody molecules were observed to binding to a single 7S domain. The high frequency with which antibody molecules were observed to bind to fragments of type IV collagen suggests that there is a single population of type IV molecules of chain organization [alpha 1(IV)]2 alpha 2(IV), and that four identical molecules must form a tetramer that is joined in an antiparallel manner at the 7S domain. The monoclonal antibodies against type V collagen, called AB12 and DH2 , were both found to recognize epitopes close to one another, the epitopes being located 45-48 nm from one end of the type V collagen molecule. The significance of this result still remains uncertain, but suggests that this site is probably highly immunoreactive. It may also be related to the specific cleavage site of type V collagen by selected metalloproteinases and by alpha-thrombin. This cleavage site is also known to be located close to one end of the type V molecule.  相似文献   

10.
Impact of flow velocity on the dynamic behaviour of biofilm bacteria   总被引:1,自引:0,他引:1  
Tsai YP 《Biofouling》2005,21(5-6):267-277
The impact of flow velocity (FV) on the growth dynamics of biofilms and bulk water heterotrophic plate count (HPC) bacteria in drinking water distribution systems was quantified and modeled by combining a logistic growth model with mass balance equations. The dynamic variations in the specific growth and release rates of biofilm bacteria were also quantified. The experimental results showed that the maximum biofilm biomass did not change when flow velocity was increased from 20 to 40 cm s(-1), but was significantly affected when flow velocity was further increased to 60 cm s(-1). Although the concentration of biofilm bacteria was substantially reduced by the higher shear stress, the concentration of bacteria in the bulk fluid was slightly increased. From this it is estimated that the specific growth rate and specific release rate of biofilm bacteria had doubled. The specific release (detachment) rate was dependent on the specific growth rate of the biofilm bacteria.  相似文献   

11.
YKL-40 is expressed in arthritic cartilage and produced in large amounts by cultured chondrocytes, but its exact role is unclear, and the identities of its physiological ligands remain unknown. Purification of YKL-40 from resorbing bovine nasal cartilage and chondrocyte monolayers demonstrated the existence of three isoforms, a major and minor form from resorbing cartilage and a third species from chondrocytes. Affinity chromatography experiments with purified YKL-40 demonstrated specific binding of all three forms to collagen types I, II, and III, thus identifying collagens as potential YKL-40 ligands. Binding to immobilized type I collagen was inhibited by soluble native ligand, but not heat-denatured ligand, confirming a specific interaction. Binding of the chondrocyte-derived species to type I collagen was also demonstrated by surface plasmon resonance analysis, and the dissociation rate constant was calculated (3.42 x 10(-3) to 4.50 x 10(-3) s(-1)). The chondrocyte-derived species was found to prevent collagenolytic cleavage of type I collagen and to stimulate the rate of type I collagen fibril formation in a concentration-dependent manner. By contrast, the cartilage major form had an inhibitory effect on type I collagen fibrillogenesis. Digestion with N-glycosidase F, endoglycosidase H and lectin blotting did not reveal any difference in the carbohydrate component of these two YKL-40 species, indicating that this does not account for the opposing effects on fibril formation rate.  相似文献   

12.
The effect of shear rate on cell growth and monoclonal antibody production of hybridoma cells was studied. The dependence of agitation rate on antibody production is discussed by measuring the amount of monoclonal antibody in cells cultured by a spinner vessel. The effect of shear rate is also studied by exposing a homogeneous shear flow to hybridoma cells in a cone-and-plate viscometer. The dependence of shear rate on hybridoma cells was observed and the increase of antibody production was arised from the increase of secretion from cells.  相似文献   

13.
A new method of iodinating collagens for use in radioimmunoassay.   总被引:1,自引:0,他引:1  
Purified collagens from a variety of species were iodinated to a high specific activity with the N-hydroxysuccinimide ester of I125-labeled p-hydroxyphenyl propionic acid (Bolton-Hunter reagent). Labeling had no effect on the immunoreactivity of the collagen as determined by hemagglutination inhibition. This compound presumably acylates the abundant ?-amino groups of lysyl and hydroxylysyl residues in the collagen molecule. Using this method it is possible to label pepsin-extracted collagen from which the terminal nonhelical extensions containing tyrosine have been cleaved. The application of Bolton-Hunter-labeled collagens to radioimmunoassay of affinity-purfied antibodies against collagen is demonstrated.  相似文献   

14.
Detachment from biofilms was evaluated using a mixed culture biofilm grown on primary wastewater in a tube reactor. The growth of biofilms and the detachment of biomass from biofilms are strongly influenced by hydrodynamic conditions. In a long-term study, three biofilms were cultivated in a biofilm tube reactor. The conducted experiments of biofilm growth and detachment can be divided into three phases: 1) an exponential phase with a rapid increase of the biofilm thickness, 2) a quasi-steady-state with spontaneous fluctuation of the biofilm thickness between 500 and 1,200 microm in the investigated biofilm systems, and 3) a washout experiment with increased shear stress in three to four steps after several weeks of quasi-steady-state. Whereas the biofilm thickness during the homogeneous growth phase can be regarded constant throughout the reactor, it was found to be very heterogeneous during the quasi-steady-state and the washout experiments. Growth and detachment during all three phases was simulated with the same one-dimensional biofilm model. For each of the three phases, a different detachment rate model was used. During the homogeneous growth phase, detachment was modeled proportional to the biofilm growth rate. During the quasi-steady-state phase, detachment was described by random detachment events assuming a base biofilm thickness. Finally, the washout experiment was simulated with detachment being a function of the biofilm thickness before the increase of the shear stress.  相似文献   

15.
Collagen type XI is a component of hyaline cartilage consisting of alpha 1(XI), alpha 2(XI), and alpha 3(XI) chains; with 5-10% of the total collagen content, it is a minor but significant component next to type II collagen, but its function and precise localization in cartilaginous tissues is still unclear. Owing to the homology of the alpha 3(XI) and alpha 1(II) collagen chains, attempts to prepare specific antibodies to native type XI collagen have been unsuccessful in the past. In this study, we report on the preparation and use for immunohistochemistry of a polyclonal antibody specific for alpha 2(XI) denatured collagen chains. The antibody was prepared by immunization with the isolated alpha 2(XI) chain and reacts neither with native type XI collagen nor type I, II, V, or IX by ELISA or immunoblotting, nor with alpha 1(XI) or alpha 3(XI), but with alpha 2(XI) chains. Using this antibody, it was possible to specifically localize alpha 2(XI) in cartilage by pretreating tissue sections with 6 M urea. In double immunofluorescence staining experiments, the distribution of alpha 2(XI) as indicative for type XI collagen in fetal bovine and human cartilage was compared with that of type II collagen, using a monoclonal antibody to alpha 1(II). Type XI collagen was found throughout the matrix of hyaline cartilage. However, owing to cross-reactivity of the monoclonal anti-alpha 1(II) with alpha 3(XI), both antibodies produced the same staining pattern. Cellular heterogeneity was, however, detected in monolayer cultures of human chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We report observations in real time of thermally driven adhesion and dissociation between a monoclonal IgE antibody and its specific antigen N-epsilon-2,4-dinitrophenyl-L-lysine. Both molecules were attached to the surfaces of different polystyrene microspheres trapped by optical tweezers. Monitoring spontaneous successive attachment and detachment events allowed a direct determination of the reaction-limited detachment rate k(off) for a single bond and also for multiple bonds. We observed both positive and negative cooperativity between multiple bonds depending on whether the antigen was linked to the microsphere with or without a tether, respectively.  相似文献   

17.
Yung-Pin Tsai 《Biofouling》2013,29(5-6):267-277
Abstract

The impact of flow velocity (FV) on the growth dynamics of biofilms and bulk water heterotrophic plate count (HPC) bacteria in drinking water distribution systems was quantified and modeled by combining a logistic growth model with mass balance equations. The dynamic variations in the specific growth and release rates of biofilm bacteria were also quantified. The experimental results showed that the maximum biofilm biomass did not change when flow velocity was increased from 20 to 40 cm s?1, but was significantly affected when flow velocity was further increased to 60 cm s?1. Although the concentration of biofilm bacteria was substantially reduced by the higher shear stress, the concentration of bacteria in the bulk fluid was slightly increased. From this it is estimated that the specific growth rate and specific release rate of biofilm bacteria had doubled. The specific release (detachment) rate was dependent on the specific growth rate of the biofilm bacteria.  相似文献   

18.
Staphylococcus aureus is a major human pathogen that has been shown to bind collagen under static conditions. However, many staphylococcal infections are hematogenously acquired and adhesion events may be influenced by shear stress. In this study, we used a dynamic experimental system consisting of a parallel-plate perfusion chamber and phase-contrast video microscope to study the effects of shear stress on the adhesion kinetics of intact S. aureus to collagen surfaces in vitro. The adhesion of S. aureus Phillips to collagen types I, II, and IV was investigated over a physiologically relevant range of wall shear stresses at 37 degrees C. S. aureus PH100, a collagen adhesin-deficient mutant strain, was used as a control strain for the experiments. We found that S. aureus Phillips could adhere to collagens I, II, and IV at wall shear stresses less than 15 dyn/cm(2) and that the kinetics of the adhesion process were wall shear stress-dependent. Similar studies with PH100 demonstrated that these cells are unable to adhere firmly to collagen surfaces. Transient interactions between PH100 and the collagen surfaces were observed at low levels of shear stress suggesting that S. aureus may also interact with collagen by an alternative mechanism that does not lead to firm adhesion.  相似文献   

19.
Primary hepatocytes of small animals such as rat and rabbit were often used for the study of extracorporeal liver support systems. Freshly isolated rat hepatocytes form spheroids within two days when cultivated as suspension in spinner vessels. These spheroids showed enhanced liver specific functions and more differentiated morphology compared to hepatocytes cultured as monolayers. However, shear stress caused by continuous agitation deteriorated spheroids gradually. In this work we immobilized spheroids to prolong liver specific activities. First, hepatocyte spheroids were suspended in collagen solution containing calcium chloride and then dropped into alginate solution. A thin layer of calcium alginate was formed around the droplet and then was removed after the inner collagen was gelled by treatment of sodium citrate buffer. Spheroids embedded in collagen-gel bead maintained liver specific functions such as albumin secretion rate longer than hepatocyte spheroids exposed to shear stress. Therefore, we suggest that this immobilization technique may offer an effective long-term hepatocyte cultivation and facilitate the development of a bioartificial liver support device.  相似文献   

20.
Protease nexin 1 (PN1) in solution forms inhibitory complexes with thrombin or urokinase, which have opposing effects on the blood coagulation cascade. An initial report provided data supporting the idea that PN1 target protease specificity is under the influence of collagen type IV (1). Although collagen type IV demonstrated no effect on the association rate between PN1 and thrombin, the study reported that the association rate between PN1 and urokinase was allosterically reduced 10-fold. This has led to the generally accepted idea that the primary role of PN1 in the brain is to act as a rapid thrombin inhibition and clearance mechanism during trauma and loss of vascular integrity. In studies to identify the structural determinants of PN1 that mediate the allosteric interaction with collagen type IV, we found that protease specificity was only affected after transient exposure of PN1 to acidic conditions that mimic the elution protocol from a monoclonal antibody column. Because PN1 used in previous studies was purified over a monoclonal antibody column, we propose that the allosteric regulation of PN1 target protease specificity by collagen type IV is a result of the purification protocol. We provide both biochemical and kinetic data to support this conclusion. This finding is significant because it implies that PN1 may play a much larger role in the modeling and remodeling of brain tissues during development and is not simply an extravasated thrombin clearance mechanism as previously suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号