首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The rotavirus nonstructural NSP4 protein, a transmembrane endoplasmic reticulum-specific glycoprotein, has been described as the first viral enterotoxin. Purified NSP4 or a peptide corresponding to NSP4 residues 114-135 induces diarrhea in young mice. NSP4 has a membrane-destabilizing activity and causes an increase in intracellular calcium levels and chloride secretion by a calcium-dependent signalling pathway in eucaryotic cells. In this study, four recombinant baculoviruses were generated expressing the rotavirus NSP4 glycoprotein from the human strains Wa and Ito, the porcine strain OSU, and the simian strain SA11, which belong to two different NSP4 genotypes, A and B. The recombinant glycoproteins, expressed as polyhistidine-tagged molecules, were analyzed by Western blotting and immunoprecipitation. Newborn mice responded with diarrhea after inoculation with each of the recombinant NSP4 proteins.  相似文献   

2.
The NSP4 protein of a simian rotavirus was reported to induce diarrhea following inoculation of mice. If NSP4 is responsible for rotavirus diarrhea in humans, attenuation of a human rotavirus may be reflected in concomitant mutations in the NSP4 gene. After 33 passages in cultured monkey kidney cells, a virulent human rotavirus (strain 89-12) was found to be attenuated in adults, children, and infants. Nucleotide sequence analysis of the NSP4 protein gene revealed only one base pair change between the virulent (unpassaged) and attenuated 89-12 viruses, which resulted from a substitution of alanine for threonine at amino acid 45 of the encoded NSP4 protein. Because both threonine and alanine have been found at position 45 of NSP4 in symptomatic and asymptomatic human rotaviruses, neither amino acid in this position could be established as a marker of virulence. Therefore, attenuation of rotavirus strain 89-12 appears to be unrelated to mutations in the NSP4 gene.  相似文献   

3.
Nonstructural glycoprotein NSP4 of group A rotavirus has recently been shown to be a viral enterotoxin, inducing diarrhea in neonatal mice. Literature is conflicting as to whether there is any consistent amino acid substitution between virulent (or symptomatic) and attenuated (or asymptomatic) rotavirus strains. We have sequenced and compared the NSP4 sequences derived from a total of 10 geographically- and serologically-related feline rotavirus strains from both diarrheal and asymptomatically-infected kittens. These NSP4 sequences were closely related to each other and there were differences at 19 amino acid residues, but none was segregated according to whether the strain was isolated from a diarrheal kitten or not. Thus, this study failed to lend support to the contention that mutations in NSP4 play a significant role in the pathogenesis of rotavirus diarrhea. Involvement of other genes may explain the outcome of infection in cats from which these 10 feline rotaviruses were isolated.  相似文献   

4.
P Tian  J M Ball  C Q Zeng    M K Estes 《Journal of virology》1996,70(10):6973-6981
During a unique morphogenetic process, rotaviruses obtain a transient membrane envelope when newly synthesized subviral particles bud into the endoplasmic reticulum (ER). As rotavirus particles mature, they lose their transient membrane and a layer of the glycoprotein VP7 forms the virion outer capsid shell. The nonstructural glycoprotein NSP4 functions as an intracellular receptor in the ER membrane (K. S. Au, W. K. Chan, J. W. Burns, and M. K. Estes, J. Virol. 63:4553-4562, 1989), and it has been hypothesized that NSP4 is involved in the removal of the envelope during viral morphogenesis (M. K. Estes and J. Cohen, Microbiol. Rev. 53:410-449, 1989; B. L. Petrie, M. K. Estes, and D. Y. Graham, J. Virol. 46:270-274, 1983). The purpose of the present study was to determine if NSP4 has a direct membrane destabilization activity (MDA) by using liposome leakage assays and electron microscopic visualization of liposome, microsome, and viral envelope disruption. The fluorescent marker (calcein) incorporated into liposomes was released when the liposomes were incubated with purified NSP4. A region corresponding to amino acid residues 114 to 135 of NSP4 also released calcein from liposomes. NSP4(114-135) peptide-specific antibody completely blocked the MDA of the purified NSP4 protein. These results suggest that this region contains at least part of the functional domain of NSP4. Liposomes composed of phosphatidylcholine and microsomes (to simulate ER membranes) were broken when observed by electron microscopy after incubation with NSP4 or the NSP4(114-135) peptide. In contrast, the envelope of Sendai virus, which is derived from cytoplasmic membranes, and erythrocytes were not disrupted by NSP4 and the NSP4(114-135) peptide. These results provide direct evidence that NSP4 possesses MDA and suggest that it can cause ER membrane damage. Therefore, NSP4 might play an important role in the removal of the transient envelope from budding particles during viral morphogenesis. A model for the MDA of NSP4 in viral morphogenesis is proposed.  相似文献   

5.
NSP4作为轮状病毒的致泻相关蛋白,其在疫苗研究中的作用近年来深受瞩目。为比较不同基因型非结构蛋白NSP4的免疫原性,我们构建了四种基因型的重组表达质粒pCI-97B6、pCI-97S36、pCI-97S34和pCI-97SZ8,在细胞水平进行瞬时表达检测后,进一步免疫小鼠,检测血清IgG抗体滴度和亚型。结果表明利用真核表达质粒表达的NSP4蛋白既可以诱导体液免疫反应,又可以诱导细胞免疫反应,但以体液免疫为主,不同基因型NSP4可具有不同的免疫原性。  相似文献   

6.
In order to analyze the antigenic structure of nonstructural protein (NSP) 4 of group A avian rotavirus strain PO-13, 25 monoclonal antibodies (MAbs) against NSP4 expressed in Escherichia coli were produced. All MAbs reacted with NSP4 on Western blotting, indicating that they recognized sequential epitopes. To determine the antigenic sites (ASs) recognized by the produced MAbs, seven truncated NSP4s were expressed in E. coli. Western blotting analysis showed that there are at least four major ASs on PO-13 NSP4, designated as AS I located in amino acids (aa) 151 to 169, AS II (aa 136 to 150), AS III (aa 112 to 133) and AS IV (aa 1 to 24). Two MAbs reacted exclusively with AS III encompassing the region that has been reported to be an enterotoxin domain. MAbs against ASs II, III and IV reacted with all avian rotaviruses tested by indirect immunofluorescent antibody assays. MAbs against AS I reacted with turkey strains, Ty-1 and Ty-3, but not with a chicken strain, Ch-1. Nine of 11 MAbs against AS II cross-reacted with NSP4 of mammalian rotavirus strains with different NSP4 genotypes. These results suggest that AS II on NSP4 is widely conserved among a variety of rotaviruses.  相似文献   

7.
Feng J  Yang J  Zheng S  Qiu Y  Chai C 《PloS one》2011,6(8):e23655
Biliary atresia is a common disease in neonates which causes obstructive jaundice and progressive hepatic fibrosis. Our previous studies indicate that rotavirus infection is an initiator in the pathogenesis of experimental biliary atresia (BA) through the induction of increased nuclear factor-kappaB and abnormal activation of the osteopontin inflammation pathway. In the setting of rotavirus infection, rotavirus nonstructural protein 4 (NSP4) serves as an important immunogen, viral protein 7 (VP7) is necessary in rotavirus maturity and viral protein 4 (VP4) is a virulence determiner. The purpose of the current study is to clarify the roles of NSP4, VP7 and VP4 in the pathogenesis of experimental BA. Primary cultured extrahepatic biliary epithelia were infected with Rotavirus (mmu18006). Small interfering RNA targeting NSP4, VP7 or VP4 was transfected before rotavirus infection both in vitro and in vivo. We analyzed the incidence of BA, morphological change, morphogenesis of viral particles and viral mRNA and protein expression. The in vitro experiments showed NSP4 silencing decreased the levels of VP7 and VP4, reduced viral particles and decreased cytopathic effect. NSP4-positive cells had strongly positive expression of integrin subunit α2. Silencing of VP7 or VP4 partially decreased epithelial injury. Animal experiments indicated after NSP4 silencing, mouse pups had lower incidence of BA than after VP7 or VP4 silencing. However, 33.3% of VP4-silenced pups (N = 6) suffered BA and 50% of pups (N = 6) suffered biliary injury after VP7 silencing. Hepatic injury was decreased after NSP4 or VP4 silencing. Neither VP4 nor VP7 were detected in the biliary ducts after NSP4. All together, NSP4 silencing down-regulates VP7 and VP4, resulting in decreased incidence of BA.  相似文献   

8.
Rotavirus is a major cause of infantile gastroenteritis with a multifactorial pathogenesis. As with many other pathogens, rotavirus infection and replication leads to rearrangement of the cytoskeleton with disorganization of cytoskeletal elements such as actin and cytokeratin through a calcium-dependent process that has not been fully characterized. The rotavirus enterotoxin NSP4, shown previously to elevate intracellular calcium levels when added exogenously as well as when expressed intracellularly, is a key player in intracellular calcium regulation during rotavirus infection. Here, we investigated the role NSP4 may play in actin rearrangement. Expression of NSP4 fused to enhanced green fluorescent protein (NSP4-EGFP), but not expression of EGFP alone, caused stabilization of long cellular projections in fully confluent HEK 293 cells. Cells expressing NSP4-EGFP for 24 h were also resistant to cell rounding induced by cytochalasin D. Quantification of filamentous actin (F-actin) content by using rhodamine-conjugated phalloidin and flow cytometry showed an elevated F-actin content in NSP4-EGFP-expressing and rotavirus-infected cells in comparison with that in nonexpressing and noninfected cells. Normalization of intracellular calcium levels prevented alterations of F-actin content. Observed changes in F-actin amounts correlated with the increased activation of the actin-remodeling protein cofilin. These calcium-dependent actin rearrangements induced by intracellular NSP4 expression may contribute to rotavirus pathogenesis by interfering with cellular processes dependent on subcortical actin remodeling, including ion transport and viral release.  相似文献   

9.
The nonstructural NSP4 protein of rotavirus has been described as the first viral enterotoxin. In this study we have examined the effect of NSP4 on polarized epithelial cells (MDCK-1) grown on permeable filters. Apical but not basolateral administration of NSP4 was found to cause a reduction in the transepithelial electrical resistance, redistribution of filamentous actin, and an increase in paracellular passage of fluorescein isothiocyanate-dextran. Significant effects on transepithelial electrical resistance were noted after a 20- to 30-h incubation with 1 nmol of NSP4. Most surprisingly, the epithelium recovered its original integrity and electrical resistance upon removal of NSP4. Preincubation of nonconfluent MDCK-1 cells with NSP4 prevented not only development of a permeability barrier but also lateral targeting of the tight-junction-associated Zonula Occludens-1 (ZO-1) protein. Taken together, these data indicate new and specific effects of NSP4 on tight-junction biogenesis and show a novel effect of NSP4 on polarized epithelia.  相似文献   

10.
Zhang M  Zeng CQ  Morris AP  Estes MK 《Journal of virology》2000,74(24):11663-11670
Previous studies have shown that the nonstructural glycoprotein NSP4 plays a role in rotavirus pathogenesis by functioning as an enterotoxin. One prediction of the mechanism of action of this enterotoxin was that it is secreted from virus-infected cells. In this study, the media of cultured (i) insect cells infected with a recombinant baculovirus expressing NSP4, (ii) monkey kidney (MA104) cells infected with the simian (SA11) or porcine attenuated (OSU-a) rotavirus, and (iii) human intestinal (HT29) cells infected with SA11 were examined to determine if NSP4 was detectable. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis-Western blotting, immunoprecipitation and N-terminal amino acid sequencing identified, in the early media from virus-infected cells, a secreted, cleavage product of NSP4 with an apparent molecular weight of 7,000 that represented amino acids 112 to 175 (NSP4 aa112-175). The secretion of NSP4 aa112-175 was not affected by treatment of cells with brefeldin A but was abolished by treatment with nocodazole and cytochalasin D, indicating that secretion of this protein occurs via a nonclassical, Golgi apparatus-independent mechanism that utilizes the microtubule and actin microfilament network. A partial gene fragment coding for NSP4 aa112-175 was cloned and expressed using the baculovirus-insect cell system. Purified NSP4 aa112-175 increased intracellular calcium mobilization in intestinal cells when added exogenously, and in insect cells when expressed endogenously, similarly to full-length NSP4. NSP4 aa112-175 caused diarrhea in neonatal mice, as did full-length NSP4. These results indicate that NSP4 aa112-175 is a functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells.  相似文献   

11.
Huang H  Schroeder F  Zeng C  Estes MK  Schoer JK  Ball JM 《Biochemistry》2001,40(13):4169-4180
The rotavirus enterotoxin, NSP4, is a novel secretory agonist that also plays a role in the unique rotavirus morphogenesis that involves a transient budding of newly made immature viral particles into the endoplasmic reticulum. NSP4 and an active peptide corresponding to NSP4 residues 114 to 135 (NSP4(114-135)) mobilize intracellular calcium and induce secretory chloride currents when added exogenously to intestinal cells or mucosa. Membrane-NSP4 interactions may contribute to these alterations; however, details of a lipid-binding domain are unresolved. Therefore, circular dichroism was used to determine (i) the interaction(s) of NSP4 and NSP4(114-135) with model membranes, (ii) the conformational changes elicited in NSP4 upon interacting with membranes, (iii) if NSP4(114-135) is a membrane interacting domain, and (iv) the molar dissociation constant (K(d)) of NSP4(114-135) with defined lipid vesicles. Circular dichroism revealed for the first time that NSP4 and NSP4(114-135) undergo secondary structural changes upon interaction with membrane vesicles. This interaction was highly dependent on both the membrane surface curvature and the lipid composition. NSP4 and NSP4(114-135) preferentially interacted with highly curved, small unilamellar vesicle membranes (SUV), but significantly less with low-curvature, large unilamellar vesicle membranes (LUV). Binding to SUV, but not LUV, was greatly enhanced by negatively charged phospholipids. Increasing the SUV cholesterol content, concomitant with the presence of negatively charged phospholipids, further potentiated the interaction of NSP4(114-135) with the SUV membrane. The K(d) of NSP4(114-135) was determined as well as partitioning of NSP4(114-135) with SUVs in a filtration-binding assay. These data confirmed NSP4 and its active peptide interact with model membranes that mimic caveolae.  相似文献   

12.
The rotavirus nonstructural glycoprotein NSP4 functions as the receptor for the inner capsid particle (ICP) which buds into the lumen of the endoplasmic reticulum during virus maturation. The structure of the cytoplasmic domain of NSP4 from rotavirus strain SA11 has been investigated by using limited proteolysis and mass spectrometry. Digestion with trypsin and V8 protease reveals a C-terminal protease-sensitive region that is 28 amino acids long. The minimal sequence requirements for receptor function have been defined by constructing fusions with glutathione S-transferase and assessing their ability to bind ICPs. These experiments demonstrate that 17 to 20 amino acids from the extreme C terminus are necessary and sufficient for ICP binding and that this binding is cooperative. These observations are consistent with a model for the structure of the NSP4 cytoplasmic region in which four flexible regions of 28 amino acids are presented by a protease-resistant coiled-coil tetramerization domain, with only the last approximately 20 amino acids of each peptide interacting with the surface binding sites on the ICP.  相似文献   

13.
14.
研究人轮状病毒非结构蛋白NSP4在轮状病毒致病性中的作用。分离得到我国人轮状病毒97SZ8株,以谷胱甘肽S-转移酶融合蛋白的形式在大肠杆菌BL-21中表达NSN蛋白C端86-175氨基酸并用G1utathione SepharoseTM 4B亲和纯化。将纯化蛋白分别以0.4nmol和1.5nmol的剂量腹腔注射新生Balb/C乳鼠,记录腹泻发生和体重变化情况。当注射0.4nmol GST-NSP4重组蛋白时,有1只小鼠发生-过性腹泻(1/6),给予1.5nmol重组蛋白时,实验组所有乳鼠都先后出现了腹泻,存在一定的剂量依赖性。本研究初步在新生小鼠建立了一种人轮状病毒腹泻动物模型,该模型有望在人轮状病毒的致腹泻机理、治疗和预防研究中发挥重要作用。  相似文献   

15.
16.
Rotavirus replication and virus assembly take place in electrodense spherical structures known as viroplasms whose main components are the viral proteins NSP2 and NSP5. The viroplasms are produced since early times after infection and seem to grow by stepwise addition of viral proteins and by fusion, however, the mechanism of viropIasms formation is unknown. In this study we found that the viroplasms surface colocalized with microtubules, and seem to be caged by a microtubule network. Moreover inhibition of microtubule assembly with nocodazole interfered with viroplasms growth in rotavirus infected cells. We searched for a physical link between viroplasms and microtubules by co-immunoprecipitation assays, and we found that the proteins NSP2 and NSP5 were co-immunoprecipitated with anti-tubulin in rotavirus infected cells and also when they were transiently co-expressed or individually expressed. These results indicate that a functional microtubule network is needed for viroplasm growth presumably due to the association of viroplasms with microtubules via NSP2 and NSP5.  相似文献   

17.
The rotavirus nonstructural protein NSP3 is a sequence-specific RNA binding protein that binds the nonpolyadenylated 3' end of the rotavirus mRNAs. NSP3 also interacts with the translation initiation factor eIF4GI and competes with the poly(A) binding protein. Deletion mutations and point mutations of NSP3 from group A rotavirus (NSP3A), expressed in Escherichia coli, indicate that the RNA binding domain lies between amino acids 4 and 149. Similar results were obtained with NSP3 from group C rotaviruses. Data also indicate that a dimer of NSP3A binds one molecule of RNA and that dimerization is necessary for strong RNA binding. The dimerization domain of NSP3 was mapped between amino acids 150 and 206 by using the yeast two-hybrid system. The eukaryotic initiation factor 4 GI subunit (eIF-4GI) binding domain of NSP3A has been mapped in the last 107 amino acids of its C terminus by using a pulldown assay and the yeast two-hybrid system. NSP3 is composed of two functional domains separated by a dimerization domain.  相似文献   

18.
Rotavirus replication and virulence are strongly influenced by virus strain and host species. The rotavirus proteins VP3, VP4, VP7, NSP1, and NSP4 have all been implicated in strain and species restriction of replication; however, the mechanisms have not been fully determined. Simian (RRV) and bovine (UK) rotaviruses have distinctive replication capacities in mouse extraintestinal organs such as the biliary tract. Using reassortants between UK and RRV, we previously demonstrated that the differential replication of these viruses in mouse embryonic fibroblasts is determined by the respective NSP1 proteins, which differ substantially in their abilities to degrade interferon (IFN) regulatory factor 3 (IRF3) and suppress the type I IFN response. In this study, we used an in vivo model of rotavirus infection of mouse gallbladder with UK × RRV reassortants to study the genetic and mechanistic basis of systemic rotavirus replication. We found that the low-replication phenotype of UK in biliary tissues was conferred by UK VP4 and that the high-replication phenotype of RRV was conferred by RRV VP4 and NSP1. Viruses with RRV VP4 entered cultured mouse cholangiocytes more efficiently than did those with UK VP4. Reassortants with RRV VP4 and UK NSP1 genes induced high levels of expression of IRF3-dependent p54 in biliary tissues, and their replication was increased 3-fold in IFN-α/β and -γ receptor or STAT1 knockout (KO) mice compared to wild-type mice. Our data indicate that systemic rotavirus strain-specific replication in the murine biliary tract is determined by both viral entry mediated by VP4 and viral antagonism of the host innate immune response mediated by NSP1.  相似文献   

19.
Rotavirus mRNAs are capped but not polyadenylated, and viral proteins are translated by the cellular translation machinery. This is accomplished through the action of the viral nonstructural protein NSP3, which specifically binds the 3' consensus sequence of viral mRNAs and interacts with the eukaryotic translation initiation factor eIF4G I. To further our understanding of the role of NSP3 in rotavirus replication, we looked for other cellular proteins capable of interacting with this viral protein. Using the yeast two-hybrid assay, we identified a novel cellular protein-binding partner for rotavirus NSP3. This 110-kDa cellular protein, named RoXaN (rotavirus X protein associated with NSP3), contains a minimum of three regions predicted to be involved in protein-protein or nucleic acid-protein interactions. A tetratricopeptide repeat region, a protein-protein interaction domain most often found in multiprotein complexes, is present in the amino-terminal region. In the carboxy terminus, at least five zinc finger motifs are observed, further suggesting the capacity of RoXaN to bind other proteins or nucleic acids. Between these two regions exists a paxillin leucine-aspartate repeat (LD) motif which is involved in protein-protein interactions. RoXaN is capable of interacting with NSP3 in vivo and during rotavirus infection. Domains of interaction were mapped and correspond to the dimerization domain of NSP3 (amino acids 163 to 237) and the LD domain of RoXaN (amino acids 244 to 341). The interaction between NSP3 and RoXaN does not impair the interaction between NSP3 and eIF4G I, and a ternary complex made of NSP3, RoXaN, and eIF4G I can be detected in rotavirus-infected cells, implicating RoXaN in translation regulation.  相似文献   

20.
Rotaviruses are one of the worldwide leading causes of gastroenteritis in children under 5 yr old. The rotavirus nonstructural NSP5 is a phosphoprotein implicated in viroplasms formation, whereas NSP6 could have a possible regulatory role of NSP5. It has been reported that N- and C-termini of NSP5 are important for amount of protein is required for structural analysis, efficient expression systems are required. His-tag fusion at the C-terminus and glutathione-S-transferase (GST)-fusion at the N-terminus were used as expression systems, and conditions for recombinant proteins expression were obtained. His-tag fusion was not efficient to produce NSP5 (2% of total protein), but NSP6 was expressed in higher amounts (11% of total protein). In contrast, GST-NSP5 and GST-NSP6 proteins correspond to 34 and 31% of the total proteins, respectively. GST-fusions seem to have a protective effect against nonstructural rotavirus protein toxicity in Escherichia coli; however, in both systems, NSP5 and NSP6 recombinant proteins were expressed as inclusion bodies. Conditions for solubilization and purification of recombinant proteins were achieved. This is the first report of expression and purification of NSP5 and NSP6 recombinant proteins in suitable amounts for further structural analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号