首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosins comprise a large superfamily of molecular motors that generate mechanical force in ATP-dependent interactions with actin filaments. On the basis of their conserved motor domain sequences, myosins can be divided into at least 17 classes, 3 of which (VIII, XI, XIII) are found in plants. Although full sequences of myosins are available from several species of green plants, little is known about the functions of these proteins. Additionally, sequence information for algal myosin is incomplete, and little attention has been given to the molecular evolution of myosin from green plants. In the present study, the Closterium peracerosum-strigosum-littorale complex was used as a model system for investigating a unicellular basal charophycean alga. This organism has been well studied with respect to sexual reproduction between its two mating types. Three types of partial sequences belonging to class XI myosins were obtained using degenerate primers designed to amplify motor domain sequences. Real-time polymerase chain reaction analysis of the respective myosin genes during various stages of the algal life cycle showed that one of the genes was more highly expressed during sexual reproduction, and that expression was cell-cycle-dependent in vegetatively grown cells.  相似文献   

2.
Myosin is believed to act as the molecular motor for many actin-based motility processes in eukaryotes. It is becoming apparent that a single species may possess multiple myosin isoforms, and at least seven distinct classes of myosin have been identified from studies of animals, fungi, and protozoans. The complexity of the myosin heavy-chain gene family in higher plants was investigated by isolating and characterizing myosin genomic and cDNA clones from Arabidopsis thaliana. Six myosin-like genes were identified from three polymerase chain reaction (PCR) products (PCR1, PCR11, PCR43) and three cDNA clones (ATM2, MYA2, MYA3). Sequence comparisons of the deduced head domains suggest that these myosins are members of two major classes. Analysis of the overall structure of the ATM2 and MYA2 myosins shows that they are similar to the previously-identified ATM1 and MYA1 myosins, respectively. The MYA3 appears to possess a novel tail domain, with five IQ repeats, a six-member imperfect repeat, and a segment of unique sequence. Northern blot analyses indicate that some of the Arabidopsis myosin genes are preferentially expressed in different plant organs. Combined with previous studies, these results show that the Arabidopsis genome contains at least eight myosin-like genes representing two distinct classes.  相似文献   

3.
4.

Background  

Myosins are molecular motors that carry cargo on actin filaments in eukaryotic cells. Seventeen myosin genes have been identified in the nuclear genome of Arabidopsis. The myosin genes can be divided into two plant-specific subfamilies, class VIII with four members and class XI with 13 members. Class XI myosins are related to animal and fungal myosin class V that are responsible for movement of particular vesicles and organelles. Organelle localization of only one of the 13 Arabidopsis myosin XI (myosin XI-6; At MYA2), which is found on peroxisomes, has so far been reported. Little information is available concerning the remaining 12 class XI myosins.  相似文献   

5.

Background

Cytoplasmic class XI myosins are the fastest processive motors known. This class functions in high-velocity cytoplasmic streaming in various plant cells from algae to angiosperms. The velocities at which they process are ten times faster than its closest class V homologues.

Results

To provide sequence determinants and structural rationale for the molecular mechanism of this fast pace myosin, we have compared the sequences from myosin class V and XI through Evolutionary Trace (ET) analysis. The current study identifies class-specific residues of myosin XI spread over the actin binding site, ATP binding site and light chain binding neck region. Sequences for ET analysis were accumulated from six plant genomes, using literature based text search and sequence searches, followed by triple validation viz. CDD search, string-based searches and phylogenetic clustering. We have identified nine myosin XI genes in sorghum and seven in grape by sequence searches. Both the plants possess one gene product each belonging to myosin type VIII as well. During this process, we have re-defined the gene boundaries for three sorghum myosin XI genes using fgenesh program.

Conclusion

Molecular modelling and subsequent analysis of putative interactions involving these class-specific residues suggest a structural basis for the molecular mechanism behind high velocity of plant myosin XI. We propose a model of a more flexible switch I region that contributes to faster ADP release leading to high velocity movement of the algal myosin XI.  相似文献   

6.
The Hsp70 homolog (Hsp70h) of Beet yellows virus (BYV) functions in virion assembly and cell-to-cell movement and is autonomously targeted to plasmodesmata in association with the actomyosin motility system (A. I. Prokhnevsky, V. V. Peremyslov, and V. V. Dolja, J. Virol. 79:14421-14428, 2005). Myosins are a diverse category of molecular motors that possess a motor domain and a tail domain involved in cargo binding. Plants have two classes of myosins, VIII and XI, whose specific functions are poorly understood. We used dominant negative inhibition to identify myosins required for Hsp70h localization to plasmodesmata. Six full-length myosin cDNAs from the BYV host plant Nicotiana benthamiana were sequenced and shown to encode apparent orthologs of the Arabidopsis thaliana myosins VIII-1, VIII-2, VIII-B, XI-2, XI-F, and XI-K. We found that the ectopic expression of the tail domains of each of the class VIII, but not the class XI, myosins inhibited the plasmodesmatal localization of Hsp70h. In contrast, the overexpression of the motor domains or the entire molecules of the class VIII myosins did not affect Hsp70h targeting. Further mapping revealed that the minimal cargo-binding part of the myosin VIII tails was both essential and sufficient for the inhibition of the proper Hsp70h localization. Interestingly, plasmodesmatal localization of the Tobacco mosaic virus movement protein and Arabidopsis protein RGP2 was not affected by myosin VIII tail overexpression. Collectively, our data implicate class VIII myosins in protein delivery to plasmodesmata and suggest that more than one mechanism of such delivery exist in plants.  相似文献   

7.
The presence of myosin and dynein in the ovaries of both Apis mellifera and Scaptotrigona postica was investigated in extracts and in histological sections. In the ovary extracts, motor proteins, myosins V, VI and dynein were detected by Western blot. In histological sections, they were detected by immunocytochemistry, using a mouse monoclonal antibody against the intermediary chain of dynein and a rabbit polyclonal antibody against the myosin V head domain. The myosin VI tail domain was recognized by a pig polyclonal antibody. The results show that these molecular motors are expressed in the ovaries of both bee species with few differences in location and intensity, in regions where movement of substances is expected during oogenesis. The fact that antibodies against vertebrate proteins recognize proteins of bee species indicates that the specific epitopes are evolutionarily well preserved.  相似文献   

8.
Myosin was partially purified from ciliated protozoan Tetrahymena pyriformis. Tetrahymena myosin has a fibrous tail with two globular heads at one end and contains 220-kDa heavy chains. The tail length of the molecule (200 nm) is longer than that of myosins from other animals (approximately 160 nm). A sample after HPLC column chromatography containing 220-kDa peptide showed a myosin-specific K+-/NH4+-EDTA-ATPase activity. Polyclonal anti-crayfish myosin heavy chain antibody reacted with Tetrahymena 220-kDa myosin heavy chain, and monoclonal anti-pan myosin antibody reacted with Tetrahymena 180-kDa peptide. The isolated 180-kDa peptide was identified as a clathrin heavy chain.  相似文献   

9.
10.
Myosin diversity in Apicomplexa   总被引:4,自引:0,他引:4  
A polymerase chain reaction (PCR) screen was used to examine the diversity of myosins in 7 Apicomplexan parasites: Toxoplasma gondii, Plasmodium falciparum, Neospora caninum, Eimeria tenella, Sarcocystis muris, Babesia bovis, and Cryptosporidium parvum. Using degenerate PCR primers compatible with the majority of known myosin classes, putative myosin sequences were obtained from all of these species. All of the sequences obtained showed greatest similarity to previously identified apicomplexan myosins, suggesting that the diversity of myosins in these parasites is limited. Myosin classes that are known to be widespread across the phylogenetic spectrum, e.g., the myosins I, II, and V, were not seen in the Apicomplexa. Thus, like the plants, the Apicomplexa may have evolved their own unique cohort of myosins that are responsible for the myosin-driven cellular functions observed in these parasites.  相似文献   

11.
The xylanase gene from Cryptococcus albidus contains seven introns. Genomic and cDNA clones under the control of the CaMV 35S promoter were transferred into tobacco plants using Agrobacterium-mediated cell transformation. The genes were transcribed and the mRNAs were amplified by the polymerase chain reaction using primers on each side of the intron region. About 90% of the amplification products from plants transformed with the genomic clone corresponded to the size of the pre-mRNA (1.2 kb) and 10% represented the spliced product (0.85 kb). The 0.85 kb fragment was cloned and sequenced and the result indicated that the introns from the xylanase gene were accurately spliced by the plant cells.  相似文献   

12.
The aim of this study was to enable the polymerase chain reaction (PCR) amplification of DNA fragments within endoglucanase gene(s) of Torula thermophila, by using degenerate primers so that the amplified fragment(s) could be used as homologous probe(s) for cloning of full-length endoglucanase gene(s). The design of the degenerate PCR primers was mainly based on the endoglucanase sequences of other fungi. The endoglucanase gene sequence of Humicola insolens was the only sequence from a thermophilic fungus publicly available in the literature. Therefore, the endoglucanase sequences of the two Trichoderma species, Trichoderma reesei and Trichoderma longibrachiatum, were used to generalize the primers. PCR amplification of T. thermophila genomic DNA with these primers resilied in a specific amplification. The specificity of the amplified fragment was shown by Southern hybridization analysis using egl3 gene of T. reesei as probe. This result suggested that the degenerate primers used in this study may be of value for studies aimed at cloning of endoglucanase genes from a range of related fungi.  相似文献   

13.
Myosins play an important role in various developmental processes in plants. We have identified 14 myosin genes in rice (Oryza sativa cv. Nipponbare) genome using sequence information available in public databases. Phylogenetic analysis of these sequences with other plant and non-plant myosins revealed that two of the predicted sequences belonged to class VIII and the others to class XI. All of these genes were distributed on seven chromosomes in the rice genome. Domain searches on these sequences indicated that a typical rice myosin consisted of Myosin_N, head domain, neck (IQ motifs), tail, and dilute (DIL) domain. Based on the sequence information obtained from predicted myosins, we isolated and sequenced two full-length cDNAs, OsMyoVIIIA and OsMyoXIE, representing each of the two classes of myosins. These two cDNAs isolated from different organs existed in isoforms due to differential splicing and showed minor differences from the predicted myosin in exon organization. Out of 14 myosin genes 11 were expressed in three major organs: leaves, panicles, and roots, among which three myosins exhibited different expression levels. On the other hand, three of the total myosin sequences showed organ-specific expression. The existence of different myosin genes and their isoforms in different organs or tissues indicates the diversity of myosin functions in rice.  相似文献   

14.
Using degenerate primers, three putative myosin sequences were amplified from Australian isolates of Babesa bovis and confirmed as myosins (termed Bbmyo-A, Bbmyo-B, and Bbmyo-C) from in vitro cultures of the W strain of B. bovis. Comprehensive analysis of 15 apicomplexan myosins suggests that members of Class XIV be defined as those with greater than 35% myosin head sequence identity and that these be further subclassed into groups bearing above 50-60% identity. Bbmyo-A protein bears a strong similarity with other apicomplexan myosin-A type proteins (subclass XIVa), the Bbmyo-B myosin head protein sequence exhibits low identity (35-39%) with all members of Class XIV, and 5'-sequence of Bbmyo-C shows strong identity (60%) with P. falciparum myosin-C protein. Domain analysis revealed five divergent IQ domains within the neck of Pfmyo-C, and a myosin-N terminal domain as well as a classical IQ sequence unusually located within the head converter domain of Bbmyo-B. A cross-reacting antibody directed against P. falciparum myosin-A (Pfmyo-A) revealed a zone of approximately 85 kDa in immunoblots prepared with B. bovis total protein, and immunofluorescence inferred stage-specific myosin-A expression since only 25% of infected erythrocytes with mostly paired B. bovis were immuno-positive. Multiplication of B. bovis in in vitro culture was inhibited by myosin- and actin-binding drugs at concentrations lower than those that inhibit P. falciparum. This study identifies and classifies three myosin genes and an actin gene in B. bovis, and provides the first evidence for the participation of an actomyosin-based motor in erythrocyte invasion in this species of apicomplexan parasite.  相似文献   

15.
Summary A polyclonal antibody directed against a 170 kDa myosin heavy chain from lily pollen tubes was employed to (a) assess the cellular distribution of the polypeptide using immunofluorescence methods, and (b) ascertain if similar polypeptides are present in pollen tubes and somatic cells of other species. Fluorescence is associated with particles of various size as well as an amorphous component, and is concentrated in the apical cytoplasm of lily and tobacco pollen tubes. Apical fluorescence is more extensive in lily than in tobacco, which may be related to different streaming patterns and apical zonation seen at the ultrastructural level. In suspension cells of tobacco andArabidopsis, fluorescence is concentrated around the nuclei. Dual localizations indicate that anti-myosin fluorescence may be associated with the presence of actin. Little or no staining was seen in controls consisting of either pre-immune serum or mono-specific IgG that had been preadsorbed with the 170 kDa polypeptide. Immunoblots show that a 170 kDa immunoreactive polypeptide is present in pollen tubes of tobacco andTradescantia virginiana in addition to lily, and in suspension culture cells of tobacco andArabidopsis and extracts of wholeArabidopsis seedlings. Our results show that a conserved 170 kDa myosin heavy chain is present in a variety of monocot and dicot cells. They are also consistent with the presence of multiple myosins in plants in general and pollen tubes in particular.Abbreviations BSA bovine serum albumin - IgG immunoglobulin G - Mf microfilament - Mt microtubule - PBS phosphate-buffered saline - PME 50 mM Pipes, 5mM EGTA - 2mM MgSO4, pH6.9.  相似文献   

16.
We have completely sequenced a gene encoding the heavy chain of myosin II, a nonmuscle myosin from the soil ameba Acanthamoeba castellanii. The gene spans 6 kb, is split by three small introns, and encodes a 1,509-residue heavy chain polypeptide. The positions of the three introns are largely conserved relative to characterized vertebrate and invertebrate muscle myosin genes. The deduced myosin II globular head amino acid sequence shows a high degree of similarity with the globular head sequences of the rat embryonic skeletal muscle and nematode unc 54 muscle myosins. By contrast, there is no unique way to align the deduced myosin II rod amino acid sequence with the rod sequence of these muscle myosins. Nevertheless, the periodicities of hydrophobic and charged residues in the myosin II rod sequence, which dictate the coiled-coil structure of the rod and its associations within the myosin filament, are very similar to those of the muscle myosins. We conclude that this ameba nonmuscle myosin shares with the muscle myosins of vertebrates and invertebrates an ancestral heavy chain gene. The low level of direct sequence similarity between the rod sequences of myosin II and muscle myosins probably reflects a general tolerance for residue changes in the rod domain (as long as the periodicities of hydrophobic and charged residues are largely maintained), the relative evolutionary "ages" of these myosins, and specific differences between the filament properties of myosin II and muscle myosins. Finally, sequence analysis and electron microscopy reveal the presence within the myosin II rodlike tail of a well-defined hinge region where sharp bending can occur. We speculate that this hinge may play a key role in mediating the effect of heavy chain phosphorylation on enzymatic activity.  相似文献   

17.
The genomic clone RG64, which is tightly linked to the blast resistance gene Pi-2(t) in rice, provides means to perform marker-aided selection in a rice breeding program. The objective of this study was to investigate the possibility of generating a polymerase chain reaction (PCR)-based polymorphic marker that can distinguish the blast resistant gene, Pi-2(t), and susceptible genotypes within cultivated rice. RG64 was sequenced, and the sequence data was used to design pairs of specific primers for (PCR) amplification of genomic DNA from rice varieties differing in their blast disease responsiveness. The amplified products, known as sequenced-tagged-sites (STSs), were not polymorphic between the three varieties examined. However, cleavage of the amplified products with the restriction enzyme HaeIII generated a polymorphic fragment, known as specific amplicon polymorphism (SAP), between the resistant and the susceptible genotypes. To examine the power of the identified SAP marker in predicting the genotype of the Pi-2 (t) locus, we determined the genotypes of the F2 individuals at this locus by performing progeny testing for the disease response in the F3 generation. The results indicated an accuracy of more than 95% in identifying the resistant plants, which was similar to that using RG64 as the hybridization probe. The identification of the resistant homozygous plants increased to 100% when the markers flanking the genes were considered simultaneously. These results demonstrate the utility of SAP markers as simple and yet reliable landmarks for use in marker-assisted selection and breeding within cultivated rice.  相似文献   

18.
This first analysis of monocotyledon myosin genes showed that at least five genes, one of which was probably spliced to yield two isoforms, were expressed in maize (Zea mays L.). The complete coding sequence of ZMM1 was determined, as were most of the sequences of two other myosin cDNAs (ZMM2 and ZMM3). ZMM1 and ZMM2 belonged to myosin class XI while ZMM3 was in class VIII. ZMM1 was abundantly expressed in leaves, roots, coleoptiles, and stems. ZMM3 showed a similar distribution but was expressed poorly in pollen. ZMM2 was predominantly expressed in seeds and may be part of a suite of cytoskeletal proteins in reproductive tissues. Phylogenetic analysis suggested that the origin of myosin classes VIII and XI predated that of angiosperms. Immunofluorescence studies using M11L1, a myosin XI antibody specific for the exposed loop 1 head region of myosin, indicated that myosin XI occurred in the cytoplasm of all root tip cells. The highest concentration of myosin XI was in the differentiating epidermal cells. In dividing cells, myosin XI was present near the cytokinetic apparatus at approximately the same concentration seen in other portions of the cytoplasm. Western blot analysis of subcellular fractions indicated that myosin XI was concentrated in mitochondria and low-density membranes.  相似文献   

19.
Structural and functional characteristics of the motor proteins of the actomyosin motility system, myosins, which can be grouped into 15 classes, are presented in brief. The structure of the myosin molecule is considered: a conservative motor domain of the head with ATP- and actin-binding sites, a head segment associated with light chains, and a tail, which is variable in various myosins performing different functions. We address the progress in the studies of myosin functioning as a motor in the in vitroassay systems. Not only animal and prokaryotic organisms but also Characean algae and plant pollen tubes contributed considerably to these studies as sources of actin and myosin. Higher-plant myosins are characterized. The data are presented concerning the interaction between some myosin forms and other actin-binding proteins and, on the other hand, the phosphoinositol signal transduction pathway, the integral plasmalemmal proteins, and the proteins of the extracellular matrix. The most important idea formulated in the review is that a dynamic reorganization of the actin cytoskeleton is a structural basis for physiological processes in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号