首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting signal 2 (PTS2)-tagged enhanced green fluorescent protein (EGFP). From mutagenized TKaEG2 cells, the wild-type CHO-K1 stably expressing rat Pex2p and PTS2-EGFP, cell colonies resistant to the 9-(1(')-pyrene)nonanol/ultraviolet treatment were examined for intracellular location of PTS2-EGFP. Of six mutant cell clones two, ZPEG227 and ZPEG231, showed cytosolic PTS2-EGFP, indicative of impaired PTS2 import, and numerous PTS1-positive particles. PEX7 expression restored the impaired PTS2 import in both mutants. Cell fusion with fibroblasts from a patient with PEX7-defective rhizomelic chondrodysplasia punctata did not complement PTS2 import defect of ZPEG227 and ZPEG231, confirming that these two are pex7 mutants. Mutation analysis of PEX7 by reverse transriptase (RT)-PCR indicated that ZPEG227-allele carried an inactivating nonsense mutation, Trp158Ter. Therefore, ZPEG227 is a pex7 mutant possessing a newly identified mutation in mammalian pex7 cell lines.  相似文献   

2.
We earlier isolated peroxisome biogenesis-defective Chinese hamster ovary (CHO) cell mutants, ZPEG241, by the 9-(1'-pyrene)nonanol/ultraviolet selection method, from TKaEG2, the wild-type CHO-K1 cells transformed with two cDNAs encoding rat Pex2p and peroxisome targeting signal type 2 (PTS2)-tagged enhanced green fluorescent protein (EGFP). Peroxisomal localization of PTS2-EGFP was specifically impaired in ZPEG241 due to the failure of Pex5pL expression. Analysis of partial genomic sequence of PEX5 revealed one-point nucleotide-mutation from G to A in the 3'-acceptor splice site located at 1 nt upstream of exon 7 encoding Pex5pL specific 37-amino acid insertion, thereby generating 21-nt deleted mRNA of PEX5L in ZPEG241. When ZPEG241-derived Pex5pL was ectopically expressed in ZPEG241, PTS2 import was not restored because of no interaction with Pex7p. Together, we confirm the pivotal role of Pex5pL in PTS2 import, showing that the N-terminal 7-amino acid residues in the 37-amino acid insertion of Pex5pL are essential for the binding to Pex7p.  相似文献   

3.
4.
To elucidate molecular and cellular mechanisms of peroxisome biogenesis, we have isolated Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by making use of enhanced green fluorescent protein (EGFP) and a frameshift-inducing mutagen ICR191. CHO-TKa cells stably expressing Pex2p were transformed with a cDNA encoding EGFP fused with peroxisomal targeting signal type 2 (PTS2-EGFP), termed Tka/EG2. TKa/EG2 cells were mutagenized with ICR191 and cultured in the presence of P9OH (9-(1'-pyrene) nonanol) followed by an exposure to UV. P9OH/UV-resistant and morphologically peroxisome-deficient mutant cells were isolated by directly observing cytosolic localization of EGFP, without cell staining. By a combination of cell-fusion and PEX transfection, we determined complementation groups (CGs) of 16 cell mutants isolated here. The mutants were classified into five CGs, including pex2, pex3, pex5, pex6, and pex7 cell mutants. In contrast to typical pex6 mutants with the impaired import of both PTS1- and PTS2-proteins, two clones, ZPEG236 and ZPEG244, showed a distinct, novel phenotype where PTS1-protein import was normal despite the abrogated PTS2 import. Dysfunction of Pex3p in pex3 ZPEG 238 was due to one base (G) insertion in the codon for Asn7 resulting in a frameshift, thereby inducing a distinct 31 amino-acid sequence and a termination. pex2 ZPEG239 showed a mutation in codon GAG for Glu(201) to a nonsense mutation, TAG. Thus, the method developed here using ICR191 could be useful for isolation of further novel cell mutants impaired in peroxisome biogenesis.  相似文献   

5.
We isolated peroxisome biogenesis-defective Chinese hamster ovary cell mutants from TKaG2 cells, wild-type CHO-K1 cells transformed with two cDNAs encoding rat Pex2p and peroxisome targeting signal (PTS) type 2-tagged green fluorescent protein, by the 9-(1'-pyrene)nonanol/UV selection method. Ten mutant clones showed cytosolic PTS2-green fluorescent protein, indicative of a defect in PTS2 import, and were classified in five complementation groups, i.e. pex1, pex2, pex5, pex14, and group A. One PEX5-deficient mutant, ZPG231, showed a novel phenotype: PTS2 proteins in the cytosol, but PTS1 proteins and catalase in peroxisomes. In ZPG231, two isoforms of the PTS1 receptor Pex5p, a shorter Pex5pS and a longer Pex5pL, were expressed as in wild-type cells, but possessed the missense point mutation S214F in both Pex5p isoforms, termed Pex5pS-S214F and Pex5pL-S214F, respectively. The S214F mutation was located only one amino acid upstream of the Pex5pL-specific 37-amino acid insertion site. Pex5pS-S214F and Pex5pL-S214F interacted with peroxisomal proteins, including PTS1 protein, catalase, and Pex14p, as efficiently as normal Pex5p. In contrast, the S214F mutation severely affected the binding of Pex5pL to the PTS2 receptor Pex7p. Expression of Pex5pL-S214F in pex5 cell mutants defective in PTS1 and PTS2 transport restored peroxisomal import of PTS1, but not PTS2. Together, the results indicate that ZPG231 is the first cell mutant providing evidence that disruption of the Pex5pL-Pex7p interaction completely abolishes PTS2 import in mammals.  相似文献   

6.
Most soluble proteins targeted to the peroxisomal matrix contain a C‐terminal peroxisome targeting signal type 1 (PTS1) or an N‐terminal PTS2 that is recognized by the receptors Pex5p and Pex7p, respectively. These receptors cycle between the cytosol and peroxisome and back again for multiple rounds of cargo delivery to the peroxisome. A small number of peroxisomal matrix proteins, including all six isozymes of peroxisomal fatty acyl‐CoA oxidase (Aox) of the yeast Yarrowia lipolytica, contain neither a PTS1 nor a PTS2. Pex20p has been shown to function as a co‐receptor for Pex7p in the import of PTS2 cargo into peroxisomes. Here we show that cells of Y. lipolytica deleted for the PEX20 gene fail to import not only the PTS2‐containing protein 3‐ketoacyl‐CoA thiolase (Pot1p) but also the non‐PTS1/non‐PTS2 Aox isozymes. Pex20p binds directly to Aox isozymes Aox3p and Aox5p, which requires the C‐terminal Wxxx(F/Y) motif of Pex20p. A W411G mutation in the C‐terminal Wxxx(F/Y) motif causes Aox isozymes to be mislocalized to the cytosol. Pex20p interacts physically with members of the peroxisomal import docking complex, Pex13p and Pex14p. Our results are consistent with a role for Pex20p as the receptor for import of the non‐PTS1/non‐PTS2 Aox isozymes into peroxisomes.  相似文献   

7.
We have identified ScPex18p and ScPex21p, two novel S. cerevisiae peroxins required for protein targeting via the PTS2 branch of peroxisomal biogenesis. Targeting by this pathway is known to involve the interaction of oligopeptide PTS2 signals with Pex7p, the PTS2 receptor. Pex7p function is conserved between yeasts and humans, with defects in the human protein causing rhizomelic chondrodysplasia punctata (RCDP), a severe, lethal peroxisome biogenesis disorder characterized by aberrant targeting of several PTS2 peroxisomal proteins, but uncertainty remains about the subcellular localization of this receptor. Previously, we have reported that ScPex7p resides predominantly in the peroxisomal matrix, suggesting that it may function as a highly unusual intraorganellar import receptor, and the data presented in this paper identify Pex18p and Pex21p as key components in the targeting of Pex7p to peroxisomes. They each interact specifically with Pex7p both in two-hybrid analyses and in vitro. In cells lacking both Pex18p and Pex21p, Pex7p remains cytosolic and PTS2 targeting is completely abolished. Pex18p and Pex21p are weakly homologous to each other and display partial functional redundancy, indicating that they constitute a two-member peroxin family specifically required for Pex7p and PTS2 targeting.  相似文献   

8.
In the present study, we investigated molecular mechanisms underlying the import of peroxisome-targeting signal type 2 (PTS2) proteins into peroxisomes. Purified Chinese hamster Pex7p that had been expressed in an Sf9/baculovirus system was biologically active in several assays such as those for PTS2 binding and assessing the restoration of the impaired PTS2 protein import in Chinese hamster ovary (CHO) pex7 mutant ZPG207. Pex7p was eluted as a monomer in gel filtration chromatography. Moreover, the mutation of the highly conserved cysteine residue suggested to be involved in the dimer formation did not affect the complementing activity in ZPG207 cells. Together, Pex7p more likely functions as a monomer. Together with PTS1 protein, the Pex7p-PTS2 protein complex was bound to Pex5pL, the longer form of Pex5p, which was prerequisite for the translocation of Pex7p-PTS2 protein complexes. Pex5pL-(Pex7p-PTS2 protein) complexes were detectable in wild-type CHO-K1 cells and were apparently more stable in pex14 CHO cells deficient in the entry site of the matrix proteins, whereas only the Pex7p-PTS2 protein complex was discernible in a Pex5pL-defective pex5 CHO mutant. Pex7p-PTS2 proteins bound to Pex14p via Pex5pL. In contrast, PTS2 protein-bound Pex7p as well as Pex7p directly and equally interacted with Pex13p, implying that the PTS2 cargo may be released at Pex13p. Furthermore, we detected the Pex13p complexes likewise formed with Pex5pL-bound Pex7p-PTS2 proteins. Thus, the Pex7p-mediated PTS2 protein import shares most of the steps with the Pex5p-dependent PTS1 import machinery but is likely distinct at the cargo-releasing stage.  相似文献   

9.
PTS2 protein import into mammalian peroxisomes   总被引:3,自引:1,他引:2  
Peroxisome targeting signal (PTS)2 directs proteins from their site of synthesis in the cytosol to the lumen of the peroxisome. Unlike PTS1 which is present in the great majority of peroxisomal matrix proteins and whose import mechanics have been dissected in considerable detail, PTS2 is a relatively rare topogenic signal whose import mechanisms are far less well understood. However, as is the case for PTS1 proteins, an inability to import PTS2 proteins leads to human disease. In this report, we describe the biochemical characterization of mammalian PTS2 protein import using a semi-permeabilized cell system. We show that a PTS2-containing reporter molecule is taken up by peroxisomes in a reaction that is time-, temperature-, ATP-, and cytosol-dependent. Furthermore, the import process is specific, saturable, and requires action of the chaperone Hsc70, the cochaperone Hsp40, and the peroxins Pex5p and Pex14p. We also demonstrate peroxisomal translocation of PTS2 reporter/antibody complexes confirming the import competence of higher order structures. Importantly, cultured fibroblasts from patients with the rhizomelic form of chondrodysplasia punctata (RCDP) which are deficient for the PTS2 receptor protein, Pex7p, are unable to import the PTS2 reporter in this assay. The ability to monitor PTS2 import in vitro will permit, for the first time, a detailed comparison of the biochemical properties of PTS1 and PTS2 protein import.  相似文献   

10.
Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling   总被引:1,自引:0,他引:1  
Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome-targeting signal (PTS) type 1 and shuttles between the cytosol and peroxisomes. Here, we show that Pex5p is ubiquitinated at the conserved cysteine(11) in a manner sensitive to dithiothreitol, in a form associated with peroxisomes. Pex5p with a mutation of the cysteine(11) to alanine, termed Pex5p-C11A, abrogates peroxisomal import of PTS1 and PTS2 proteins in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, resulting in its accumulation in peroxisomes. These results suggest an essential role of the cysteine residue in the export of Pex5p. Furthermore, domain mapping indicates that N-terminal 158-amino-acid region of Pex5p-C11A, termed 158-CA, is sufficient for such dominant-negative activity by binding to membrane peroxin Pex14p via its two pentapeptide WXXXF/Y motifs. Stable expression of either Pex5p-C11A or 158-CA likewise inhibits the wild-type Pex5p import into peroxisomes, strongly suggesting that Pex5p-C11A exerts the dominant-negative effect at the translocation step via Pex14p. Taken together, these findings show that the cysteine(11) of Pex5p is indispensable for two distinct steps, its import and export. The Pex5p-C11A would be a useful tool for gaining a mechanistic insight into the matrix protein import into peroxisomes.  相似文献   

11.
To investigate mechanisms related to functions of the peroxisome targeting signal (PTS) 1 receptor, Pex5p, we analyzed peroxisome matrix protein import in fibroblasts from three patients with peroxisome biogenesis disorders, all with different mutations in the PEX5 gene. The patients 2-01 (Zellweger syndrome) and 2-05 (neonatal adrenoleukodystrophy) have the reported mutations, R390X and N489K, and patient 2-03 (infantile Refsum disease) has a newly identified mutation, S563W. Fibroblasts from 2-03 (S563W) were detected in both PTS1 and PTS2 imports despite the PEX5 defect, findings in contrast with fibroblasts from 2-05 (N489K) severely defective in PTS1 import and those from 2-01 (R390X) severely defective in both PTS1 and PTS2. The PTS1 receptor in 2-03 is functional for only the C-terminal -SKL sequence (acyl-CoA oxidase) and had little or no function for C-terminal -AKL (D-bifunctional protein and sterol carrier protein 2) and -KANL (catalase) sequences, respectively. After transfection of these mutated PEX5 cDNA into the PEX5-defective CHO mutant, transformants of ZP102 revealed that each mutation was responsible for each dysfunction of the PTS1 import. It seems apparent that -AKL and -KANL are poorer variants of PTS1 and are likely to be more susceptible to effects of mutation of its receptor, Pex5p.  相似文献   

12.
We have previously demonstrated that the targeting signal ofpumpkin catalase, Cat1, is an internal PTS1 (peroxisomal targetingsignal 1)-like sequence, QKL, located at –13 to –11from the C-terminus, which is different from the typical PTS1SKL motif located in the C-terminus. Here we show that Cat1import into peroxisome is dependent on the cytosolic PTS receptor,Pex5p, in Arabidopsis, similar to typical PTS1 import, and thatother components for transport of peroxisomal matrix proteinssuch as Pex14p, Pex13p, Pex12p and Pex10p also contribute tothe import of Cat1. Interestingly, however, we found that Cat1interacts with the N-terminal domain of Pex5p, but not the C-terminaldomain for interaction with the typical PTS1, revealing thatPex5p recognizes Cat1 in a manner distinct from typical PTS1.  相似文献   

13.
Human catalase forms a 240-kDa tetrameric complex and degrades H(2) O(2) in peroxisomes. Human catalase is targeted to peroxisomes by the interaction of its peroxisomal targeting signal type 1 (PTS1)-like KANL sequence with the cytosolic PTS1 receptor Pex5p. We show herein that human catalase tetramers are formed in the cytoplasm and that the expression of a PTS signal on each of the four subunits is not necessary for peroxisomal transport. We previously demonstrated that a Pex5p mutant defective in binding to Pex13p, designated Pex5p(Mut234), imports typical PTS1-type proteins but not catalase. This impaired catalase import is not rescued by replacing its C-terminal KANL sequence with a typical PTS1 sequence, SKL, indicating that the failure of catalase import in Mut234-expressing cells is not due to its weak PTS1. In contrast, several enzymatically inactive and monomeric mutants of catalase are efficiently imported in Mut234-expressing cells. Moreover, trimeric chloramphenicol acetyltransferase (CAT) harboring SKL is not imported in Pex5p(Mut234)-expressing cells, but CAT-SKL trimers are transported to peroxisomes in the wild-type cells. These findings suggest that the Pex5p-Pex13p interaction likely plays a pivotal role in the peroxisomal import of folded and oligomeric proteins.  相似文献   

14.
15.
In mammals, two isoforms of the peroxisome targeting signal (PTS) type 1 receptor Pex5p, i.e. Pex5pS and Pex5pL with an internal 37-amino acid insertion, have previously been identified. Expression of either type of Pex5p complements the impaired PTS1 import in Chinese hamster ovary pex5 mutants, but only Pex5pL can rescue the PTS2 import defect noted in a subgroup of pex5 mutants such as ZP105. In this work, we found that Pex5pL directly interacts with the PTS2 receptor Pex7p, carrying its cargo PTS2 protein in the cytosol. Pex5pL, but not Pex5pS, mediated the binding of PTS2 protein to Pex14p by translocating Pex7p, demonstrating that Pex5pL plays a pivotal role in peroxisomal PTS2 import. Pex5p was localized mostly in the cytosol in wild-type CHO-K1 and Pex14p-deficient mutant cells, whereas it accumulated in the peroxisomal remnants in cell mutants defective in Pex13p or the RING family peroxins such as Pex2p and Pex12p. Furthermore, overexpression of Pex14p, but not Pex10p, Pex12p, or Pex13p, caused accumulation of Pex5p in peroxisomal membranes, with concomitant interference with PTS1 and PTS2 import. Therefore, Pex5p carrying the cargoes most likely docks with the initial site (Pex14p) in a putative import machinery, subsequently translocating to other components such as Pex13p, Pex2p, Pex10p, and Pex12p.  相似文献   

16.
The import receptor Pex7p and the PTS2 targeting sequence   总被引:1,自引:0,他引:1  
This chapter concerns one branch of the peroxisome import pathway for newly-synthesized peroxisomal proteins, specifically the branch for matrix proteins that contain a peroxisome targeting sequence type 2 (PTS2). The structure and utilization of the PTS2 are discussed, as well as the properties of the receptor, Pex7p, which recognizes the PTS2 sequence and conveys these proteins to the common translocation machinery in the peroxisome membrane. We also describe the recent evidence that this receptor recycles into the peroxisome matrix and back out to the cytosol in the course of its function. Pex7p is assisted in its functioning by several species-specific auxiliary proteins that are described in the following chapter.  相似文献   

17.
Posttranslational matrix protein import into peroxisomes uses either one of the two peroxisomal targeting signals (PTS), PTS1 and PTS2. Unlike the PTS1 receptor Pex5p, the PTS2 receptor Pex7p is necessary but not sufficient to target cargo proteins into the peroxisomal matrix and requires coreceptors. Saccharomyces cerevisiae possesses two coreceptors, Pex18p and Pex21p, with a redundant but not a clearly defined function. To gain further insight into the early events of this import pathway, PTS2 pre-import complexes of S. cerevisiae were isolated and characterized by determination of size and protein composition in wild-type and different mutant strains. Mass spectrometric analysis of the cytosolic PTS2 pre-import complex indicates that Fox3p is the only abundant PTS2 protein under oleate growth conditions. Our data strongly suggest that the formation of the ternary cytosolic PTS2 pre-import complex occurs hierarchically. First, Pex7p recognizes cargo proteins through its PTS2 in the cytosol. In a second step, the coreceptor binds to this complex, and finally, this ternary 150 kDa pre-import complex docks at the peroxisomal membrane, where both the PTS1 and the PTS2 import pathways converge. Gel filtration analysis of membrane-bound subcomplexes suggests that Pex13p provides the initial binding partner at the peroxisomal membrane, whereas Pex14p assembles with Pex18p in high-molecular-weight complexes after or during dissociation of the PTS2 receptor.  相似文献   

18.
We have cloned the Hansenula polymorpha PEX4 gene by functional complementation of a peroxisome-deficient mutant. The PEX4 translation product, Pex4p, is a member of the ubiquitin-conjugating enzyme family. In H.polymorpha, Pex4p is a constitutive, low abundance protein. Both the original mutant and the pex4 deletion strain (Deltapex4) showed a specific defect in import of peroxisomal matrix proteins containing a C-terminal targeting signal (PTS1) and of malate synthase, whose targeting signal is not yet known. Import of the PTS2 protein amine oxidase and the insertion of the peroxisomal membrane proteins Pex3p and Pex14p was not disturbed in Deltapex4 cells. The PTS1 protein import defect in Deltapex4 cells could be suppressed by overproduction of the PTS1 receptor, Pex5p, in a dose-response related manner. In such cells, Pex5p is localized in the cytosol and in peroxisomes. The peroxisome-bound Pex5p specifically accumulated at the inner surface of the peroxisomal membrane and thus differed from Pex5p in wild-type peroxisomes, which is localized throughout the matrix. We hypothesize that in H. polymorpha Pex4p plays an essential role for normal functioning of Pex5p, possibly in mediating recycling of Pex5p from the peroxisome to the cytosol.  相似文献   

19.
Saccharomyces cerevisiae delta3,delta2-enoyl-CoA isomerase (Eci1p), encoded by ECI1, is an essential enzyme for the betaoxidation of unsaturated fatty acids. It has been reported, as well as confirmed in this study, to be a peroxisomal protein. Unlike many other peroxisomal proteins, Ecilp possesses both a peroxisome targeting signal type 1 (PTS1)-like signal at its carboxy-terminus (-HRL) and a PTS2-like signal at its amino-terminus (RIEGPFFIIHL). We have found that peroxisomal targeting of a fusion protein consisting of Eci1p in front of green fluorescent protein (GFP) is not dependent on Pex7p (the PTS2 receptor), ruling out a PTS2 mechanism, but is dependent on Pex5p (the PTS1 receptor). This Pex5p-dependence was unexpected, since the putative PTS1 of Ecilp is not at the C-terminus of the fusion protein; indeed, deletion of this signal (-HRL-) from the fusion did not affect the Pex5p-dependent targeting. Consistent with this, Pex5p interacted in two-hybrid assays with both Eci1p and Eci1PdeltaHRL. Ecilp-GFP targeting and Eci1pdeltaHRL interaction were abolished by replacement of Pex5p with Pex5p(N495K), a point-mutated Pex5p that specifically abolishes the PTS1 protein import pathway. Thus, Eci1p peroxisomal targeting does require the Pex5p-dependent PTS1 pathway, but does not require a PTS1 of its own. By disruption of ECI1 and DCI1, we found that Dci1p, a peroxisomal PTS1 protein that shares 50% identity with Eci1p, is necessary for Eci1p-GFP targeting. This suggests that the Pex5p-dependent import of Eci1p-GFP is due to interaction and co-import with Dci1p. Despite the dispensability of the C-terminal HRL for import in wild-type cells, we have also shown that this tripeptide can function as a PTS1, albeit rather weakly, and is essential for targeting in the absence of Dci1p. Thus, Eci1p can be targeted to peroxisomes by its own PTS1 or as a hetero-oligomer with Dcilp. These data demonstrate a novel, redundant targeting pathway for Eci1p.  相似文献   

20.
《The Journal of cell biology》1996,135(6):1763-1774
PEX5 encodes the type-1 peroxisomal targeting signal (PTS1) receptor, one of at least 15 peroxins required for peroxisome biogenesis. Pex5p has a bimodal distribution within the cell, mostly cytosolic with a small amount bound to peroxisomes. This distribution indicates that Pex5p may function as a cycling receptor, a mode of action likely to require interaction with additional peroxins. Loss of peroxins required for protein translocation into the peroxisome (PEX2 or PEX12) resulted in accumulation of Pex5p at docking sites on the peroxisome surface. Pex5p also accumulated on peroxisomes in normal cells under conditions which inhibit protein translocation into peroxisomes (low temperature or ATP depletion), returned to the cytoplasm when translocation was restored, and reaccumulated on peroxisomes when translocation was again inhibited. Translocation inhibiting conditions did not result in Pex5p redistribution in cells that lack detectable peroxisomes. Thus, it appears that Pex5p can cycle repeatedly between the cytoplasm and peroxisome. Altered activity of the peroxin defective in CG7 cells leads to accumulation of Pex5p within the peroxisome, indicating that Pex5p may actually enter the peroxisome lumen at one point in its cycle. In addition, we found that the PTS1 receptor was extremely unstable in the peroxin-deficient CG1, CG4, and CG8 cells. Altered distribution or stability of the PTS1 receptor in all cells with a defect in PTS1 protein import implies that the genes mutated in these cell lines encode proteins with a direct role in peroxisomal protein import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号