首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glassy carbon electrode modified with boron oxide nanoparticles supported on multiwall carbon nanotubes was obtained via a facile approach. The as-prepared modified electrode exhibits excellent electrocatalytic activity toward the redox of glucose in pH 7.0 phosphate buffer solution. The electrochemical response of the modified electrode to glucose shows a linear range of 1.5-260 μM with a correlation coefficient of 0.9986 and the calculated detection limit is 0.8 μM at a signal-to-noise ratio of 3, which makes it useful for developing the electrochemical determination of glucose concentrations without using glucose oxidase at physiological pH.  相似文献   

2.
A novel biosensor harnessing a conducting polymer functionalized with a copper ion specific peptide proved to be highly effective for electrochemical analysis of copper ions. The developed sensor comprised a transducer based on a conducting polymer (poly(3-thiopheneacetic acid)) electrode and a probe (tripeptide, Gly–Gly–His) selectively cognitive of copper ions. For functionalization of the electrode, the carboxylic group of the polymer was covalently coupled with the amine group of the tripeptide, and its structural features were confirmed by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection infrared (ATR-IR) spectroscopy. The peptide modified polythiophene biosensor was used for the electrochemical analysis of various trace metal ions by square wave voltammetry. The electrode was found to be highly sensitive and selective to Cu2+ in the range of 0.02–20 μM with almost no cross binding to other metal ions such as Ni2+ and Pb2+. Furthermore, the developed sensor exhibited a high stability and reproducibility despite the repeated use of the sensor electrode and probe. With the advent of more diverse affinity bioprobes specific towards a broad range of analytes, the demonstrated strategy harnessing peptide modified polythiophene biosensor is likely to provide an excellent platform for the selective determination of trace amount of analytes whose detection is otherwise cumbersome.  相似文献   

3.
《IRBM》2008,29(2-3):202-207
This paper deals with the development of a disposable electrochemical sensor for the detection of hydrogen peroxide, using screen-printed carbon-based electrodes (SPCEs) modified with multi-wall carbon nanotubes (MWCNs) dispersed in a polyethylenimine (PEI) mixture. The modified sensors showed an excellent electrocatalytic activity towards the analyte, respect to the high overvoltage characterising unmodified screen-printed sensors. The composition of the PEI/MWCNT dispersion was optimised in order to improve the sensitivity and reproducibility. The optimised sensor showed good reproducibility (10% RSD calculated on three experiments repeated on the same electrode), whereas a reproducibility of 15% as RSD was calculated on electrodes from different preparations. Preliminary experiments carried out using glucose oxidase (GOD) as biorecognition element gave rise to promising results indicating that these new devices may represent interesting components for biosensor construction.  相似文献   

4.
A novel amperometric nonenzymatic glucose sensor based on Au-doped NiO nanobelts has been successfully fabricated and applied to nonenzymatic glucose detection. Its electrochemical behavior towards the oxidation of glucose was compared with NiO nanofibers and Au microparticles prepared with a similar procedure. The NiO-Au hybrid nanobelts modified electrode displays greatly enhanced electrocatalytic activity towards glucose oxidation, revealing a synergistic effect between the matrix NiO and the doped Au. The as-prepared NiO-Au nanobelts based glucose sensor displays significantly lower onset potential, lower detection limit, higher sensitivity, and wider linear range than that of pristine NiO nanofibers modified electrode. Moreover, Au nanoparticles distributed in NiO nanofibers enabled amperometric glucose detection with insignificant interference from ascorbic acid and uric acid. These results indicate that the NiO-Au hybrid nanobelt is a promising candidate in the development of highly sensitive and selective nonenzymatic glucose sensors.  相似文献   

5.
A nonenzymatic electrochemical biosensor was developed for the detection of glucose based on an electrode modified with palladium nanoparticles (PdNPs)-functioned graphene (nafion-graphene). The palladium nanoparticle-graphene nanohybrids were synthesized using an in situ reduction process. Nafion-graphene was first assembled onto an electrode to chemically adsorb Pd(2+). And Pd(2+) was subsequently reduced by hydrazine hydrate to form PdNPs in situ. Such a PdNPs-graphene nanohybrids-based electrode shows a very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium. The proposed biosensor can be applied to the quantification of glucose with a wide linear range covering from 10 μM to 5mM (R=0.998) with a low detection limit of 1 μM. The experiment results also showed that the sensor exhibits good reproducibility and long-term stability, as well as high selectivity with no interference from other potential competing species.  相似文献   

6.
Boron-doped diamond has drawn much attention in electrochemical sensors. However there are few reports on non-doped diamond because of its weak conductivity. Here, we reported a glucose biosensor based on electrochemical pretreatment of non-doped nanocrystalline diamond (N-NCD) modified gold electrode for the selective detection of glucose. N-NCD was coated on gold electrode and glucose oxidase (GOx) was immobilized onto the surfaces of N-NCD by forming amide linkages between enzyme amine residues and carboxylic acid groups on N-NCD. The anodic pretreatment of N-NCD modified electrode not only promoted the electron transfer rate in the N-NCD thin film, but also resulted in a dramatic improvement in the reduction of the dissolved oxygen. This performance could be used to detect glucose at negative potential through monitoring the current change of oxygen reduction. The biosensor effectively performs a selective electrochemical analysis of glucose in the presence of common interferents, such as ascorbic acid (AA), acetaminophen (AP) and uric acid (UA). A wide linear calibration range from 10 microM to 15 mM and a low detection limit of 5 microM were achieved for the detection of glucose.  相似文献   

7.
Electrochemical detection of glucose in alkaline solution was performed on La0.88Sr0.12MnO3 (LSMO) nanofibers modified carbon paste electrode. Perovskite-type oxide LSMO nanofibers were prepared by an electrospinning and calcination process. The morphologies, structures, and electrochemical behavior of the nanofibers were characterized by scanning electron microscope, energy dispersive spectrometer, X-ray diffraction, Fourier transform infrared spectrum, and cyclic voltammetry. The modified electrode shows excellent electrocatalytic activity toward glucose. Under optimal conditions, the linear response was obtained in the range of 0.05–100 μM with high sensitivity and rapid response.  相似文献   

8.
A novel non-enzymatic electrochemiluminescence (ECL) sensor based on palladium nanoparticles (PdNPs)–functional carbon nanotubes (FCNTs) was discovered for glucose detection. PdNPs were homogeneously modified on FCNTs using a facile spontaneous redox reaction method. Their morphologies were characterized by transmission electron microscopy (TEM). Based on ECL experimental results, the PdNPs–FCNTs–Nafion film modified electrode displayed high electrocatalytic activity towards the oxidation of glucose. The free radicals generated by the glucose oxidation reacted with the luminol anion (LH), and enhanced the ECL signal. Under the optimized conditions, the linear response of ECL intensity to glucose concentration was valid in the range from 0.5 to 40 μmol L−1 (r2 = 0.9974) with a detection limit (S/N = 3) of 0.09 μmol L−1. In addition, the modified electrode presented high resistance towards the poisoning of chloride ion, high selectivity and long-term stability. In order to verify the sensor reliability, it was applied to the determination of glucose in glucose injection samples. The results indicated that the proposed approach provided a highly sensitive, more facile method with good reproducibility for glucose determination, promising the development of a non-enzymatic ECL glucose sensor.  相似文献   

9.
A sensitive electrochemiluminescence (ECL) detection of etimicin at Tris(2,2′‐bipyridyl)ruthenium(II) [Ru(bpy)32+]–Nafion modified carbon paste electrodes was developed. The immobilized Ru(bpy)32+ shows good electrochemical and photochemical activities. Electrochemical and electrochemiluminescence characterizations of the modified carbon electrodes were made by means of cyclic voltammetry and electrochemical impendence spectroscopy. The modified electrode showed an electrocatalytic response to the oxidation of etimicin, producing a sensitized ECL signal. The ECL sensor showed a linear response to etimicin in the range of 8.0–160.0 ng mL?1 with a detection limit of 6.7 ng mL?1. This method for etimicin determination possessed good sensitivity and reproducibility with a coefficient of variation of 5.1% (n = 7) at 100 ng mL?1. The ECL sensor showed good selectivity and long‐term stability. Its surface could be renewed quickly and reproducibly by a simple polish step. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A simple and sensitive electrochemiluminescence (ECL) method for the determination of etamsylate has been developed by coupling an electrochemical flow‐through cell with a tris(2,2'‐bipyridyl)ruthenium(II) (Ru(bpy)32+)–Nafion‐modified carbon electrode. It is based on the oxidized Ru(bpy)32+ on the electrode surface reacting with etamsylate and producing an excellent ECL signal. Under optimized experimental conditions, the proposed method allows the measurement of etamsylate over the range of 8–1000 ng/mL with a correlation coefficient of r = 0.9997 (n = 7) and a limit of detection of 1.57 ng/mL (3σ), the relative standard deviation (RSD) for 1000 ng/mL etamsylate (n = 7) is 0.96%. The immobilized Ru(bpy)32+ carbon paste electrode shows good electrochemical and photochemical stability. This method is rapid, simple, sensitive and has good reproducibility. It has been successfully applied to the determination of the studied etamsylate in pharmaceutical preparations with satisfactory results. The possible ECL reaction mechanism has also been discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Cobalt‐free layered lithium‐rich nickel manganese oxides, Li[LixNiyMn1?x?y]O2 (LLNMO), are promising positive electrode materials for lithium rechargeable batteries because of their high energy density and low materials cost. However, substantial voltage decay is inevitable upon electrochemical cycling, which makes this class of materials less practical. It has been proposed that undesirable voltage decay is linked to irreversible structural rearrangement involving irreversible oxygen loss and cation migration. Herein, the authors demonstrate that the voltage decay of the electrode is correlated to Mn4+/Mn3+ redox activation and subsequent cation disordering, which can be remarkably suppressed via simple compositional tuning to induce the formation of Ni3+ in the pristine material. By implementing our new strategy, the Mn4+/Mn3+ reduction is subdued by an alternative redox reaction involving the use of pristine Ni3+ as a redox buffer, which has been designed to be widened from Ni3+/Ni4+ to Ni2+/Ni4+, without compensation for the capacity in principle. Negligible change in the voltage profile of modified LLNMO is observed upon extended cycling, and manganese migration into the lithium layer is significantly suppressed. Based on these findings, we propose a general strategy to suppress the voltage decay of Mn‐containing lithium‐rich oxides to achieve long‐lasting high energy density from this class of materials.  相似文献   

12.
This review briefly emphasizes the different detection approaches (electrochemical sensors, chemiluminescence, surface-enhanced Raman scattering), functional nanostructure materials (quantum dots, metal nanoparticles, metal nanoclusters, magnetic nanomaterials, metal oxide nanoparticles, polymer-based nanomaterials, and carbonaceous nanomaterials) and detection mechanisms. Furthermore, the emphasis of this review is on the integration of functional nanomaterials with optical spectroscopic techniques for the identification of various biomarkers (nucleic acids, glucose, uric acid, oxytocin, dopamine, ascorbic acid, bilirubin, spermine, serotonin, thiocyanate, Pb2+, Cu2+, Hg2+, F, peptides), and cancer biomarkers (mucin 1, prostate specific antigen, carcinoembryonic antigen, CA15-3, human epidermal growth factor receptor 2, C-reactive protein, and interleukin-6). Analytical characteristics of nanomaterials-based optical sensors are summarized in the tables, providing the insights of nanomaterials-based optical sensors for biomarkers detection. Finally, the opportunities and challenges of nanomaterials-based optical analytical approaches for the detection of various biomarkers (inorganic, organic, biomolecules, peptides and proteins) are discussed.  相似文献   

13.
In this article, gold nanostructure modified electrodes were achieved by a simple one-step electrodeposition method. The morphologies of modified electrodes could be easily controlled by changing the pH of HAuCl4 solution. The novel nanoflower-like particles with the nanoplates as the building blocks could be interestingly obtained at pH 5.0. The gold nanoflower modified electrodes were then used for the fabrication of electrochemical DNA biosensor. The DNA biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the use of ferricyanide as an electrochemical redox indicator. The DNA immobilization and hybridization on gold nanoflower modified electrode was studied with the use of [Ru(NH3)6]3+ as a hybridization indicator. The electrochemical DNA biosensor shows a good selectivity and sensitivity toward the detection of target DNA. A detection limit of 1 pM toward target DNA could be obtained.  相似文献   

14.
In the pursuit of more economical electrocatalysts for non-enzymatic glucose sensors, one-dimensional Cu nanowires (Cu NWs) with uniform size distribution and a large aspect ratio (>200) were synthesized by a facile, scalable, wet-chemistry approach. The morphology, crystallinity, and surface property of the as-prepared Cu NWs were examined by SEM, XRD, and XPS, respectively. The electrochemical property of Cu NWs for glucose electrooxidation was thoroughly investigated by cyclic voltammetry. In the amperometric detection of glucose, the Cu NWs modified glassy carbon electrode exhibited an extraordinary limit of detection as low as 35 nM and a wide dynamic range with excellent sensitivity of 420.3 μA cm(-2) mM(-1), which was more than 10,000 times higher than that of the control electrode without Cu NWs. The performance of the developed glucose sensor was also independent to oxygen concentration and free from chloride poisoning. Furthermore, the interference from uric acid, ascorbic acid, acetaminophen, fructose, and sucrose at the level of their physiological concentration were insignificant, indicating excellent selectivity. Finally, good accuracy and high precision for the quantification of glucose concentration in human serum samples implicate the applicability of Cu NWs in sensitive and selective non-enzymatic glucose detection.  相似文献   

15.
A simple selective method for determination of ascorbic acid using polymerized direct blue 71 (DB71) is described. Anodic polymerization of the azo dye DB71 on glassy carbon (GC) electrode in 0.1M H(2)SO(4) acidic medium was found to yield thin and stable polymeric films. The poly(DB71) films were electroactive in wide pH range (1-13). A pair of symmetrical redox peaks at a formal redox potential, E('0)=-0.02V vs. Ag/AgCl (pH 7.0) was observed with a Nernstian slope -0.058V, is attributed to a 1:1 proton+electron involving polymer redox reactions at the modified electrode. Scanning electron microscope (SEM), atomic force microscope (AFM) and electrochemical impedance spectroscopy (EIS) measurements were used for surface studies of polymer modified electrode. Poly(DB71) modified GC electrode showed excellent electrocatalytic activity towards ascorbic acid in neutral buffer solution. Using amperometric method, linear range (1x10(-6)-2x10(-3)M), dynamic range (1x10(-6)-0.01M) and detection limit (1x10(-6)M, S/N=3) were estimated for measurement of ascorbic acid in pH 7.0 buffer solution. Major interferences such as dopamine and uric acid are tested at this modified electrode and found that selective detection of ascorbic acid can be achieved. This new method successfully applied for determination of ascorbic acid in commercial tablets with satisfactory results.  相似文献   

16.
Dong S  Zhang S  Chi L  He P  Wang Q  Fang Y 《Analytical biochemistry》2008,381(2):199-204
A carbon paste electrode modified with multiwall carbon nanotubes and copper(I) oxide (MWCNT-Cu2O CPME) was fabricated, and the electrochemical behaviors of 19 kinds of natural amino acids at this modified electrode were studied. The experimental results showed that the various kinds of amino acids without any derivatization displayed obvious oxidation current responses at the modified electrode. It was also found that the current response values of amino acids were dependent mainly on pH values of buffer solutions. The phenomenon could be explained by the fact that the amino acids suffered complexation or electrocatalytic oxidation processes under different pH values. Six kinds of amino acids (arginine, tryptophan, histidine, threonine, serine, and tyrosine), which performed high-oxidation current responses in alkaline buffers, were selected to be detected simultaneously by capillary zone electrophoresis coupled with amperometric detection (CZE-AD). These amino acids could be perfectly separated within 20 min, and their detection limits were as low as 10−7 or 10−8 mol L−1 magnitude (signal/noise ratio = 3). The above results demonstrated that MWCNT-Cu2O CPME could be successfully employed as an electrochemical sensor for amino acids with some advantages of convenient preparation, high sensitivity, and good repeatability.  相似文献   

17.
Mu Y  Jia D  He Y  Miao Y  Wu HL 《Biosensors & bioelectronics》2011,26(6):2948-2952
Development of fast and sensitive sensors for glucose determination is important in food industry, clinic diagnostics, biotechnology and many other areas. In these years, considerable attention has been paid to develop non-enzymatic electrodes to solve the disadvantages of the enzyme-modified electrodes, such as instability, high cost, complicated immobilization procedure and critical operating situation et al. Nano nickel oxide (NiO) modified non-enzymatic glucose sensors with enhanced sensitivity were investigated. Potential scanning nano NiO modified carbon paste electrodes up to high potential in alkaline solution greatly increases the amount of redox couple Ni(OH)(2)/NiOOH derived from NiO, and thus improves their electrochemical properties and electrocatalytical performance toward the oxidation of glucose. The non-enzymatic sensors response quickly to glucose and the response time is less than 5s, demonstrating excellent electrocatalytical activity and assay performance. The calibration plot is linear over the wide concentration range of 1-110 μM with a sensitivity of 43.9 nA/μM and a correlation coefficient of 0.998. The detection limit of the electrode was found to be 0.16 μM at a signal-to-noise ratio of 3. The proposed non-enzymatic sensors can be used for the assay of glucose in real sample.  相似文献   

18.
A rapid prototyping of an inexpensive, disposable graphene and copper nanocomposite sensor strip using polymeric flexible substrate for highly sensitive and selective nonenzymatic glucose detection has been developed and tested for direct oxidization of glucose. The CuNPs were electrochemically deposited on to the graphene sheets to improve electron transfer rates and to enhance electrocatalytic activity toward glucose. The graphene based electrode with CuNPs demonstrated a high degree of sensitivity (1101.3±56 μA/mM.cm2), excellent selectivity (without an interference with Ascorbic Acid, Uric Acid, Dopamine, and Acetaminophen), good stability with a linear response to glucose ranging from 0.1 mM to 0.6 mM concentration, and detection limits of 0.025 mM to 0.9 mM. Characterization of the electrodes was performed by scanning electron microscopy (FESEM and SEM). The electrochemical properties of the modified graphene electrodes were inspected by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and amperometry.  相似文献   

19.
We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0 × 10−20 to 1.0 × 10−12 M, and the second segment part is in the range of 1.0 × 10−12 to 1.0 × 10−7 M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer.  相似文献   

20.
Nickel Uptake by Pseudomonas aeruginosa: Role of Modifying Factors   总被引:1,自引:0,他引:1  
Pseudomonas aeruginosa cells growing in minimal medium were 40-fold more sensitive to Ni2+ than cells growing in enriched medium, suggesting a possible protective role of medium ingredients. Likewise, cells pre-grown in enriched medium showed a high K m (6.15 mM) and increased Ni2+ uptake (950 nmol mg−1 protein, 1h) over cells pre-sown in minimal medium (K m , 0.48 mM; 146 nmol mg−1 protein, 1 h). The overall pattern indicates that cells pre-grown in enriched medium were characterized by having lowered affinity towards Ni2+ than those with minimal medium background. The enhanced Ni2+ uptake by enriched medium-grown cells can be correlated with the improved metabolic state of the cells. Ni2+ uptake was optimum at neutrality (pH 7.0). A major Ni2+ transport system was competitively inhibited by Mg2+, Zn2+, Cd2+, or Co2+ (400 μM each). Noticeably, a minor Ni2+ transport pathway was still operative even in the higher concentration range of Mg2+ (4 mM and 40 mM). The stimulation of Ni2+ uptake monitored in the presence of different carbon sources (0.5% wt/vol, each) showed the sequence: glucose (1.6-fold) > phenol = gallic acid (1.5-fold). Succinate, in comparison, reduced Ni2+ uptake (0.5-fold) possibly because of its acting as a metal chelator as well. Sensitivity of Ni2+ transport towards methyl viologen, azide, 2-4 DNP, and DCCD suggested that transport was energy-linked. Received: 13 January 1998 / Accepted: 21 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号