首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oriented cell division is a fundamental determinant of tissue organization. Simple epithelia divide symmetrically in the plane of the monolayer to preserve organ structure during epithelial morphogenesis and tissue turnover. For this to occur, mitotic spindles must be stringently oriented in the Z-axis, thereby establishing the perpendicular division plane between daughter cells. Spatial cues are thought to play important roles in spindle orientation, notably during asymmetric cell division. The molecular nature of the cortical cues that guide the spindle during symmetric cell division, however, is poorly understood. Here we show directly for the first time that cadherin adhesion receptors are required for planar spindle orientation in mammalian epithelia. Importantly, spindle orientation was disrupted without affecting tissue cohesion or epithelial polarity. This suggests that cadherin receptors can serve as cues for spindle orientation during symmetric cell division. We further show that disrupting cadherin function perturbed the cortical localization of APC, a microtubule-interacting protein that was required for planar spindle orientation. Together, these findings establish a novel morphogenetic function for cadherin adhesion receptors to guide spindle orientation during symmetric cell division.  相似文献   

2.
Tissue morphogenesis depends on precise regulation and timely co-ordination of cell division and also on the control of the direction of cell division. Establishment of polarity division axis, correct alignment of the mitotic spindle, segregation of fate determinants equally or unequally between daughter cells, are essential for the realization of oriented cell division. Furthermore, oriented cell division is regulated by intrinsic cues, extrinsic cues and other cues, such as cell geometry and polarity. However, dysregulation of cell division orientation could lead to abnormal tissue development and function. In the present study, we review recent studies on the molecular mechanism of cell division orientation and explain their new roles in skin repair and regeneration.  相似文献   

3.
Cell division orientation during animal development can serve to correctly organize and shape tissues, create cellular diversity or both. The underlying cellular mechanism is regulated spindle orientation. Depending on the developmental context, extrinsic signals or intrinsic cues control the correct orientation of the mitotic spindle. Cell geometry has been known to be another determinant of spindle orientation and recent results have shed new light?on the link between cellular shape and cell division orientation. The importance of controlling spindle orientation is manifested in neurodevelopmental defects such as?microcephaly, tumor initiation as well as defects in tissue architecture and cell fate misspecification. Here, we summarize the role of oriented cell division during animal development and also outline the cellular and molecular mechanisms in selected invertebrate and vertebrate systems.  相似文献   

4.
Epithelial cells mostly orient the spindle along the plane of the epithelium (planar orientation) for mitosis to produce two identical daughter cells. The correct orientation of the spindle relies on the interaction between cortical polarity components and astral microtubules. Recent studies in mammalian tissue culture cells suggest that the apically localised atypical protein kinase C (aPKC) is important for the planar orientation of the mitotic spindle in dividing epithelial cells. Yet, in chicken neuroepithelial cells, aPKC is not required in vivo for spindle orientation, and it has been proposed that the polarization cues vary between different epithelial cell types and/or developmental processes. In order to investigate whether Drosophila aPKC is required for spindle orientation during symmetric division of epithelial cells, we took advantage of a previously isolated temperature-sensitive allele of aPKC. We showed that Drosophila aPKC is required in vivo for spindle planar orientation and apical exclusion of Pins (Raps). This suggests that the cortical cues necessary for spindle orientation are not only conserved between Drosophila and mammalian cells, but are also similar to those required for spindle apicobasal orientation during asymmetric cell division.  相似文献   

5.
Cortical force generators play a central role in the orientation and positioning of the mitotic spindle. In higher eukaryotes, asymmetrically localized cortical polarity determinants recruit or activate such force generators, which, through interactions with astral microtubules, position the mitotic spindle at the future site of cytokinesis. Recent studies in budding yeast have shown that, rather than the cell cortex, the astral microtubules themselves may provide polarity cues that are needed for asymmetric pulling on the mitotic spindle. Such asymmetry has been shown to be required for proper spindle positioning, and consequently faithful and accurate chromosome segregation. In this review, we highlight results that have shed light on spindle orientation in this classical model of asymmetric cell division, and review findings that may shed light on similar processes in higher eukaryotes.  相似文献   

6.
Proper spatial control of the cell division plane is essential to any developing organism. In most cell types, the relative size of the two daughter cells is determined by the position of the mitotic spindle within the geometry of the mother cell. We review the underlying mechanisms responsible for positioning of the mitotic spindle, both in cases where the spindle is placed in the center of the cell and in cases where the spindle is placed away from the center of the cell. We discuss the idea that cortical pulling forces are sufficient to provide a general mechanism for spindle positioning within symmetrically and asymmetrically dividing cells.  相似文献   

7.
Proper spindle orientation is required for asymmetric cell division and the establishment of complex tissue architecture. In the developing epidermis, spindle orientation requires a conserved cortical protein complex of LGN/NuMA/dynein-dynactin. However, how microtubule dynamics are regulated to interact with this machinery and properly position the mitotic spindle is not fully understood. Furthermore, our understanding of the processes that link spindle orientation during asymmetric cell division to cell fate specification in distinct tissue contexts remains incomplete. We report a role for the microtubule catastrophe factor KIF18B in regulating microtubule dynamics to promote spindle orientation in keratinocytes. During mitosis, KIF18B accumulates at the cell cortex, colocalizing with the conserved spindle orientation machinery. In vivo we find that KIF18B is required for oriented cell divisions within the hair placode, the first stage of hair follicle morphogenesis, but is not essential in the interfollicular epidermis. Disrupting spindle orientation in the placode, using mutations in either KIF18B or NuMA, results in aberrant cell fate marker expression of hair follicle progenitor cells. These data functionally link spindle orientation to cell fate decisions during hair follicle morphogenesis. Taken together, our data demonstrate a role for regulated microtubule dynamics in spindle orientation in epidermal cells. This work also highlights the importance of spindle orientation during asymmetric cell division to dictate cell fate specification.  相似文献   

8.
Asymmetric partitioning of cell-fate determinants during development requires coordinating the positioning of these determinants with orientation of the mitotic spindle. In the Drosophila peripheral nervous system, sensory organ progenitor cells (SOPs) undergo several rounds of division to produce five cells that give rise to a complete sensory organ. Here we have observed the asymmetric divisions that give rise to these cells in the developing pupae using green fluorescent protein fusion proteins. We find that spindle orientation and determinant localization are tightly coordinated at each division. Furthermore, we find that two types of asymmetric divisions exist within the sensory organ precursor cell lineage: the anterior-posterior pI cell-type division, where the spindle remains symmetric throughout mitosis, and the strikingly neuroblast-like apical-basal division of the pIIb cell, where the spindle exhibits a strong asymmetry at anaphase. In both these divisions, the spindle reorientates to position itself perpendicular to the region of the cortex containing the determinant. On the basis of these observations, we propose that two distinct mechanisms for controlling asymmetric cell divisions occur within the same lineage in the developing peripheral nervous system in Drosophila.  相似文献   

9.
Stem cells are a promising cell source for regenerative medicine due to their characteristics of self‐renewal and differentiation. The intricate balance between these two cell fates is maintained by precisely controlled symmetric and asymmetric cell divisions. Asymmetric division has a fundamental importance in maintaining tissue homeostasis and in the development of multi‐cellular organisms. For example, during development, asymmetric cell divisions are responsible for the formation of the body axis. Mechanistically, mitotic spindle dynamics determine the assembly and separation of chromosomes and regulate the orientation of cell division. Interestingly, symmetric and asymmetric cell division is not mutually exclusive and a range of factors are involved in such cell‐fate decisions, the measurement of which can provide efficient and reliable information on the regenerative potential of a cell. The balance between self‐renewal and differentiation in stem cells is controlled by various biophysical and biochemical cues. Although the role of biochemical factors in asymmetric stem cell division has been widely studied, the effect of biophysical cues in stem‐cell self‐renewal is not comprehensively understood. Herein, we review the biological relevance of stem‐cell asymmetric division to regenerative medicine and discuss the influences of various intrinsic and extrinsic biophysical cues in stem‐cell self‐renewal. This review particularly aims to inform the clinical translation of efforts to control the self‐renewal ability of stem cells through the tuning of various biophysical cues.  相似文献   

10.
Control of spindle polarity and orientation in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Control of mitotic spindle orientation represents a major strategy for the generation of cell diversity during development of metazoans. Studies in the budding yeast Saccharomyces cerevisiae have contributed towards our present understanding of the general principles underlying the regulation of spindle positioning in an asymmetrically dividing cell. In S. cerevisiae, the mitotic spindle must orient along the cell polarity axis, defined by the site of bud emergence, to ensure correct nuclear division between the mother and daughter cells. Establishment of spindle polarity dictates this process and relies on the concerted control of spindle pole function and a precise program of cues originating from the cell cortex that directs cytoplasmic microtubule attachments during spindle morphogenesis. These cues cross talk with the machinery responsible for bud-site selection, indicating that orientation of the spindle in yeast cells is mechanistically coupled to the definition of a polarity axis and the division plane. Here, we propose a model integrating the inherently asymmetric properties of the spindle pathway with the program of positional information contributing towards orienting the spindle in budding yeast. Because the basic machinery orienting the spindle in higher-eukaryotic cells appears to be conserved, it might be expected that similar principles govern centrosome asymmetry in the course of metazoan development.  相似文献   

11.
The extracellular matrix guides the orientation of the cell division axis   总被引:5,自引:0,他引:5  
The cell division axis determines the future positions of daughter cells and is therefore critical for cell fate. The positioning of the division axis has been mostly studied in systems such as embryos or yeasts, in which cell shape is well defined. In these cases, cell shape anisotropy and cell polarity affect spindle orientation. It remains unclear whether cell geometry or cortical cues are determinants for spindle orientation in mammalian cultured cells. The cell environment is composed of an extracellular matrix (ECM), which is connected to the intracellular actin cytoskeleton via transmembrane proteins. We used micro-contact printing to control the spatial distribution of the ECM on the substrate and demonstrated that it has a role in determining the orientation of the division axis of HeLa cells. On the basis of our analysis of the average distributions of actin-binding proteins in interphase and mitosis, we propose that the ECM controls the location of actin dynamics at the membrane, and thus the segregation of cortical components in interphase. This segregation is further maintained on the cortex of mitotic cells and used for spindle orientation.  相似文献   

12.
Size specification of macromolecular assemblies in the cytoplasm is poorly understood [1]. In principle, assemblies could scale with cell size or use intrinsic mechanisms. For the mitotic spindle, scaling with cell size is expected, because the function of this assembly is to physically move sister chromatids into the center of nascent daughter cells. Eggs of Xenopus laevis are among the largest cells known that cleave completely during cell division. Cell length in this organism changes by two orders of magnitude ( approximately 1200 microm to approximately 12 microm) while it develops from a fertilized egg into a tadpole [2]. We wondered whether, and how, mitotic spindle length and morphology adapt to function at these different length scales. Here, we show that spindle length increases with cell length in small cells, but in very large cells spindle length approaches an upper limit of approximately 60 microm. Further evidence for an upper limit to spindle length comes from an embryonic extract system that recapitulates mitotic spindle assembly in a test tube. We conclude that early mitotic spindle length in Xenopus laevis is uncoupled from cell length, reaching an upper bound determined by mechanisms that are intrinsic to the spindle.  相似文献   

13.
In animal cells, positioning of the mitotic spindle is crucial for defining the plane of cytokinesis and the size ratio of daughter cells. We have characterized this phenomenon in a rat epithelial cell line using microscopy, micromanipulation, and microinjection. Unmanipulated cells position the mitotic spindle near their geometric center, with the spindle axis lying roughly parallel to the long axis of the cell. Spindles that were initially misoriented underwent directed rotation and caused a delay in anaphase onset. To gain further insight into this process, we gently deformed cells with a blunted glass needle to change the spatial relationship between the cortex and spindle. This manipulation induced spindle movement or rotation in metaphase and/or anaphase, until the spindle reached a proper position relative to the deformed shape. Spindle positioning was inhibited by either treatment with low doses of nocodazole or microinjection of antibodies against dynein, apparently due to the disruption of the organization of dynein and/or astral microtubules. Our results suggest that mitotic cells continuously monitor and maintain the position of the spindle relative to the cortex. This process is likely driven by interactions among astral microtubules, the motor protein dynein, and the cell cortex and may constitute part of a mitotic checkpoint mechanism.  相似文献   

14.
Drosophila neuroblasts are stem cells that divide asymmetrically to produce another large neuroblast and a smaller ganglion mother cell (GMC). During neuroblast division, several cell fate determinants, such as Miranda, Prospero and Numb, are preferentially segregated into the GMC, ensuring its correct developmental fate. The accurate segregation of these determinants relies on proper orientation of the mitotic spindle within the dividing neuroblast, and on the correct positioning of the cleavage plane. In this study we have analyzed the role of centrosomes and astral microtubules in neuroblast spindle orientation and cytokinesis. We examined neuroblast division in asterless (asl) mutants, which, although devoid of functional centrosomes and astral microtubules, form well-focused anastral spindles that undergo anaphase and telophase. We show that asl neuroblasts assemble a normal cytokinetic ring around the central spindle midzone and undergo unequal cytokinesis. Thus, astral microtubules are not required for either signaling or positioning cytokinesis in Drosophila neuroblasts. Our results indicate that the cleavage plane is dictated by the positioning of the central spindle midzone within the cell, and suggest a model on how the central spindle attains an asymmetric position during neuroblast mitosis. We have also analyzed the localization of Miranda during mitotic division of asl neuroblasts. This protein accumulates in morphologically regular cortical crescents but these crescents are mislocalized with respect to the spindle orientation. This suggests that astral microtubules mediate proper spindle rotation during neuroblast division.  相似文献   

15.
A critical and irreversible step in the cell division cycle is cytokinesis which physically separates the two daughter cells. This event is consequently subject to tight spatial and temporal regulation. This review focuses on the spatial regulatory mechanisms controlling the position of the division plane. Studies performed in prokaryotic and eukaryotic systems have revealed that various signal-emitting spatial cues – mitotic spindle, nucleus, nucleoid or cell tips – can favour or inhibit the assembly of the cytokinetic apparatus in their vicinity. Most often, several mechanisms operate in parallel to integrate spatial information and promote faithful genome segregation as well as proper cytoplasmic division. We primarily describe the spatial regulatory mechanisms operating in the fission yeast model system, where a detailed molecular understanding of cytokinesis has been achieved. In this system, spatial regulations target a major factor controlling the position of the division plane, the anillin-like protein Mid1. These mechanisms are then compared to spatial regulatory mechanisms prevailing in animal cells and rod-shaped bacteria.  相似文献   

16.
Mitotic spindle bipolarity defines a unique division plane that promotes the successful transmission of genetic material during cytokinesis. The positioning and orientation of the spindle determines the symmetry of cell division and the relative location of daughter cells, which regulate cell fate decisions that contribute to embryonic development and tissue differentiation. Recent studies have identified integrins as regulators of spindle positioning and orientation, as well as spindle bipolarity and cytokinesis. This review summarizes and discusses the current effort focused on understanding how integrins regulate these mitotic events.  相似文献   

17.
Orientation of the division axis can determine cell fate in the presence of morphogenetic gradients. Understanding how mitotic cells integrate directional cues is therefore an important question in embryogenesis. Here, we investigate the effect of dynamic shear forces on confined mitotic cells. We found that human epithelial cells (hTERT-RPE1) as well as MC3T3 osteoblasts align their mitotic spindle perpendicular to the external force. Spindle orientation appears to be a consequence of cell elongation along the zero-force direction in response to the dynamic shear. This process is a nonlinear response to the strain amplitude, requires actomyosin activity and correlates with redistribution of myosin II. Mechanosteered cells divide normally, suggesting that this mechanism is compatible with biological functions.  相似文献   

18.
Spatial coordination of the cell-division axis with cellular polarity and/or with the position of neighboring cells is crucial for embryonic development, organogenesis and tissue homeostasis. In most cell types, the position of the mitotic spindle at the onset of anaphase dictates the orientation of the division axis; in unicellular organisms, it plays an important role in chromosome segregation. Cortical factors play a key role in the orientation of the spindle. Recent data from yeast reveal that the spindle does not passively react to cortical signals but actively interprets them to find its correct position. We review the data leading to a "compass model" for spindle positioning and discuss its potential generality.  相似文献   

19.
In multicellular animals, cell communication sometimes serves to orient the direction in which cells divide. Control of division orientation has been proposed to be critical for partitioning developmental determinants and for maintaining epithelial architecture. Surprisingly, there are few cases where we understand the mechanisms by which external cues, transmitted by intercellular signaling, specify the division orientation of animal cells. One would predict that cytosolic molecules or complexes exist that are capable of interpreting extrinsic cues, translating the positions of these cues into forces on microtubules of the mitotic spindle. In recent years, a key intracellular complex has been identified that is required for pulling forces on mitotic spindles in Drosophila, Caenorhabditis elegans and vertebrate systems. One member of this complex, a protein with tetratricopeptide repeat (TPR) and GoLoco (Gα-binding) domains, has been found localized in positions that coincide with the positions of spindle-orienting extracellular cues. Do TPR-GoLoco proteins function as conserved, spatially regulated mediators of spindle orientation by intercellular signaling? Here, we review the relevant evidence among cases from diverse animal systems where this protein complex has been found to localize to specific cell-cell contacts and to be involved in orienting mitotic spindles.  相似文献   

20.
The orientation of mitotic spindles, which determines the plane of cell division, is tightly regulated in polarized cells such as epithelial cells, but it has been unclear whether there is a mechanism regulating spindle orientation in non-polarized cultured cells. In adherent cultured cells, spindles are positioned at the center of the cells and the axis of the spindle lies in the longest axis of the cell. Thus, cell geometry is thought to be one of cues for spindle orientation and positioning in cultured cells because this defines the center and the long axis of the cell. Recent work provides a new insight into the spindle orientation in cultured cells; spindles are aligned along the axis parallel to the cell-substrate adhesion plane. Concomitantly, integrin-mediated cell adhesion to the extracellular matrix (ECM), rather than gravitation, cell-cell adhesion or cell geometry, has shown to be essential for this mechanism of spindle orientation. Several independent lines of evidence confirm the involvement of cell-ECM adhesion in spindle orientation in both cultured cells and in developing organisms. The important future challenge is to identify a molecular mechanism(s) that links integrin and spindles in the control of spindle axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号