首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(Na++K+)-ATPase (NKA) mediates positive inotropy in the heart. Extensive studies have demonstrated that the reverse-mode Na+/Ca2+-exchanger (NCX) plays a critical role in increasing intracellular Ca2+ concentration through the inhibition of NKA-induced positive inotropy by cardiac glycosides. Little is known about the nature of the NCX functional mode in the activation of NKA-induced positive inotropy. Here, we examined the effect of an NKA activator SSA412 antibody on 45Ca influx in isolated rat myocytes and found that KB-R7943, a NCX reverse-mode inhibitor, fails to inhibit the activation of NKA-induced 45Ca influx, suggesting that the Ca2+ influx via the reverse-mode NCX does not mediate this process. Nifedipine, an L-type Ca2+ channel (LTCC) inhibitor, completely blocks the activation of NKA-induced 45Ca influx, suggesting that the LTCC is responsible for the moderate increase in intracellular Ca2+. In contrast, the inhibition of NKA by ouabain induces 4.7-fold 45Ca influx compared with the condition of activation of NKA. Moreover, approximately 70% of ouabain-induced 45Ca influx was obstructed by KB-R7943 and only 30% was impeded by nifedipine, indicating that both the LTCC and the NCX contribute to the rise in intracellular Ca2+ and that the NCX reverse-mode is the major source for the 45Ca influx induced by the inhibition of NKA. This study provides direct evidence to demonstrate that the activation of NKA-induced Ca2+ increase is independent of the reverse-mode NCX and pinpoints a mechanistic distinction between the activation and inhibition of the NKA-mediated Ca2+ influx path ways in cardiomyocytes.  相似文献   

2.
PMA-induced respiratory burst neutrophils were exposed to exogenous nitric oxide (NO) donor sodium nitroprusside (SNP) to study the effect of NO on calcium signaling. A sharp rise of cytosolic calcium concentration ([Ca2+]c) was triggered by 1 mM SNP with and without external calcium. We found that GF 109203X, a specific inhibitor of protein kinase C, DPI, a putative inhibitor of the respiratory burst-generating NADPH oxidase, and 2-DG, a non-metabolizable analog of glucose, completely inhibited the SNP-induced rise of [Ca2+]c in PMA-activated respiratory burst neutrophils. Meanwhile, 2-APB and TMB-8, two potent IP3 receptor inhibitors, prevented calcium increase respectively. Furthermore, N-ethylmaleimide (NEM), a specific cysteine alkylating agent, evidently abolished the [Ca2+]c elevation. In contrast, the sGC inhibitor NS2028 had little effect on the rise of [Ca2+]c. Taken together, these results indicated that exogenous NO induced the release of calcium from intracellular IP3 receptor-sensitive stores of neutrophils via S-nitrosylation in a respiratory burst-dependent manner.  相似文献   

3.
The objective of this study was to understand the mechanism of action of nitric oxide (NO) in the heart by determining whether nitric oxide (NO) released from sodium nitroprusside (SNP) induces p38 mitogen activated protein kinase (p38 MAPK) phosphorylation and whether this is mediated through a cyclic GMP (cGMP)/protein kinase G (PKG) pathway. p38 MAPK activation was examined by Western blotting of whole cell lysates of embryonic chick cardiomyocytes with antibodies specific to the native or phosphorylated forms of p38 MAPK. SNP, 1 mM, which released significant amounts of NO as determined by Griess reaction, induced p38 MAPK phosphorylation that was apparent within 10 min, was significantly (p<0.05) greater than control at 60 min and remained higher than initial levels up to the 4 h end point of the experiment. This could not be attributed to hydrogen peroxide release from SNP as catalase did not affect SNP-induced p38 MAPK phosphorylation. SB202190, a relatively selective inhibitor of p38 MAPK, mainly p38alpha MAPK, inhibited SNP-induced p38 MAPK phosphorylation. SNP-induced p38 MAPK phosphorylation was not altered by pre-treatment with the PKG inhibitor KT 5823 or by ODQ a potent and selective inhibitor of NO-sensitive guanylyl cyclase. p38 MAPK phosphorylation was not induced by the cell permeable cGMP analogue, 8-Br-cGMP. In summary, considering that new therapeutic strategies aimed at NO and p38 MAPK are being considered for myocardial injury and heart failure, these data demonstrate that SNP induces p38 MAPK phosphorylation through a pathway that is independent of NO-induced activation of cGMP/PKG pathways and suggest that non cGMP/PKG regulatory proteins leading to p38 MAPK phosphorylation merit further investigation to address this therapeutic target.  相似文献   

4.
Diabetes mellitus (DM) is a serious metabolic disorder with micro- and macrovascular complications that results in significant morbidity and mortality. It is well established that cytosolic Ca2+ play an important role in controlling insulin secretion in pancreatic β-cells. The Na+/Ca2+ exchanger (NCX), an ion transport protein, is expressed in the plasma membrane of virtually all animal cells. NCX is a reversible carrier that can mediate the transport of Ca2+ across the plasma membrane in both directions. Therefore, great efforts have been made to identify NCX associated with DM. NCX is expressed in several tissues, and acts in the protection against intracellular calcium overload; in the regulation of insulin secretion by beta cells, and in improving vascular endothelium-dependent relaxation. All these mechanisms are associated with DM pathogenesis and its chronic complications. Therefore, NCX is a candidate protein for the development of these disorders. Only a few studies investigated NCX in relation to chronic complications of diabetes, with inconclusive results.  相似文献   

5.
《Cell calcium》2016,59(6):535-540
In ureteric microvessels the antagonistic relationship between Ca2+ signalling in endothelium and Ca2+ oscillations in myocytes and pericytes of arterioles and venules involves nitric oxide (NO), but the underlying mechanisms are not well understood. In the present study we investigated the effects of carbachol and NO donor SNAP on Ca2+ signalling and vasomotor responses of arterioles and venules in intact urteric microvascular network in situ using confocal microscopy. Vasomotor responses of arterioles and venules induced by AVP correlated with the occurrence of Ca2+ oscillations in the myocytes and pericytes and were not abolished by the removal of Ca2+ from extracellular fluid. Carbachol-induced rise of intracellular Ca2+ in endothelium was accompanied by the termination of the Ca2+ oscillations in myocytes and pericytes. This carbachol-induced inhibitory effect on Ca2+ oscillations in myocytes and pericytes was reversed by ODQ, an inhibitor of soluble guanylyl cyclase (sGC) and by Rp-8-pCPT-cGMPS, an inhibitor of protein kinase G (PKG). Ca2+ oscillations in myocytes and pericytes were also effectively blocked by NO donor SNAP. An Inhibitory effect of SNAP was markedly enhanced by zaprinast, a selective inhibitor of cGMP-specific phosphodiesterase-5, and reversed by sGC inhibitor, ODQ and PKG inhibitor, Rp-8-pCPT-cGMPS. The cGMP analogue and selective PKG activator 8pCPT-cGMP also induced inhibition of the AVP-induced Ca2+ oscillations in myocytes and pericytes. SNAP had no effects on Ca2+ oscillations induced by caffeine in distributing arcade arterioles. Consequently, we conclude that NO- mediated inhibition of Ca2+ oscillations in myocytes and pericytes predominantly recruits the cGMP/PKG dependent pathway. The inhibitory effect of NO/cGMP/PKG cascade is associated with suppressed Ca2+ release from the SR of myocytes and pericytes selectively via the inositol triphosphate receptor (IP3R) channels.  相似文献   

6.
We tried to determine the mechanisms by which Ca2+ mediated NO-induced programmed cell death (PCD) in tobacco protoplasts. Treatment of tobacco protoplasts with the NO donor sodium nitroprusside (SNP) resulted in a rapid [Ca2+]cyt accumulation and decrease in mitochondrial membrane potential (ΔΨm) before the appearance of PCD. NO-induced PCD could be largely prevented not only by NO scavenger c-PTIO, but also by EGTA (Ca2+ chelator), LaCl3 (Ca2+-channel blocker) or CsA (a specific mitochondrial permeability transition pore inhibitor, which also inhibit Ca2+ cycling by mitochondria). All results suggested that NO-induced PCD is mediated through mitochondrial pathway and regulated by Ca2+.  相似文献   

7.
Na+/Ca2+ exchangers (NCXs) promote the extrusion of intracellular Ca2+ to terminate numerous Ca2+-mediated signaling processes. Ca2+ interaction at two Ca2+ binding domains (CBDs; CBD1 and CBD2) is important for tight regulation of the exchange activity. Diverse Ca2+ regulatory properties have been reported with several NCX isoforms; whether the regulatory diversity of NCXs is related to structural differences of the pair of CBDs is presently unknown. Here, we reported the crystal structure of CBD2 from the Drosophila melanogaster exchanger CALX1.1. We show that the CALX1.1-CBD2 is an immunoglobulin-like structure, similar to mammalian NCX1-CBD2, but the predicted Ca2+ interaction region of CALX1.1-CBD2 is arranged in a manner that precludes Ca2+ binding. The carboxylate residues that coordinate two Ca2+ in the NCX1-CBD1 structure are neutralized by two Lys residues in CALX1.1-CBD2. This structural observation was further confirmed by isothermal titration calorimetry. The CALX1.1-CBD2 structure also clearly shows the alternative splicing region forming two adjacent helices perpendicular to CBD2. Our results provide structural evidence that the diversity of Ca2+ regulatory properties of NCX proteins can be achieved by (1) local structure rearrangement of Ca2+ binding site to change Ca2+ binding properties of CBD2 and (2) alternative splicing variation altering the protein domain-domain conformation to modulate the Ca2+ regulatory behavior.  相似文献   

8.
Nitric oxide (NO) induces airway smooth muscle cell (SMC) relaxation, but the underlying mechanism is not well understood. Consequently, we investigated the effects of NO on airway SMC contraction, Ca2+ signaling, and Ca2+ sensitivity in mouse lung slices with phase-contrast and confocal microscopy. Airways that were contracted in response to the agonist 5-hydroxytryptamine (5-HT) transiently relaxed in response to the NO donor, NOC-5. This NO-induced relaxation was enhanced by zaprinast or vardenafil, two selective inhibitors of cGMP-specific phosphodiesterase-5, but blocked by ODQ, an inhibitor of soluble guanylyl cyclase, and by Rp-8-pCPT-cGMPS, an inhibitor of protein kinase G (PKG). Simultaneous measurements of airway caliber and SMC [Ca2+]i revealed that airway contraction induced by 5-HT correlated with the occurrence of Ca2+ oscillations in the airway SMCs. Airway relaxation induced by NOC-5 was accompanied by a decrease in the frequency of these Ca2+ oscillations. The cGMP analogues and selective PKG activators 8Br-cGMP and 8pCPT-cGMP also induced airway relaxation and decreased the frequency of the Ca2+ oscillations. NOC-5 inhibited the increase of [Ca2+]i and contraction induced by the photolytic release of inositol 1,4,5-trisphosphate (IP3) in airway SMCs. The effect of NO on the Ca2+ sensitivity of the airway SMCs was examined in lung slices permeabilized to Ca2+ by treatment with caffeine and ryanodine. Neither NOC-5 nor 8pCPT-cGMP induced relaxation in agonist-contracted Ca2+-permeabilized airways. Consequently, we conclude that NO, acting via the cGMP–PKG pathway, induced airway SMC relaxation by predominately inhibiting the release of Ca2+ via the IP3 receptor to decrease the frequency of agonist-induced Ca2+ oscillations.  相似文献   

9.
Abstract

Calcium transients play an essential role in cardiomyocytes and electromagnetic fields (EMF) and affect intracellular calcium levels in many types of cells. Effects of EMF on intracellular calcium transients in cardiomyocytes are not well studied. The aim of this study was to assess whether extremely low frequency electromagnetic fields (ELF-EMF) could affect intracellular calcium transients in cardiomyocytes. Cardiomyocytes isolated from neonatal Sprague-Dawley rats were exposed to rectangular-wave pulsed ELF-EMF at four different frequencies (15?Hz, 50?Hz, 75?Hz and 100?Hz) and at a flux density of 2?mT. Intracellular calcium concentration ([Ca2+]i) was measured using Fura-2/AM and spectrofluorometry. Perfusion of cardiomyocytes with a high concentration of caffeine (10?mM) was carried out to verify the function of the cardiac Na+/Ca2+ exchanger (NCX) and the activity of sarco(endo)-plasmic reticulum Ca2+-ATPase (SERCA2a). The results showed that ELF-EMF enhanced the activities of NCX and SERCA2a, increased [Ca2+]i baseline level and frequency of calcium transients in cardiomyocytes and decreased the amplitude of calcium transients and calcium level in sarcoplasmic reticulum. These results indicated that ELF-EMF can regulate calcium-associated activities in cardiomyocytes.  相似文献   

10.
SEA0400 is a potent and selective Na(+)/Ca(2+) exchanger (NCX) inhibitor. We evaluated the inhibitory effects of SEA0400 on Na(+)(i)-dependent (45)Ca(2+) uptake and whole-cell Na(+)/Ca(2+) exchange currents in NCX-transfected fibroblasts. SEA0400 preferentially inhibited (45)Ca(2+) uptake by NCX1 compared with inhibitions by NCX2, NCX3, and NCKX2. SEA0400 also selectively blocked outward exchange currents from NCX1 transfectants. We searched for regions that may form the SEA0400 receptor in the NCX1 molecule by NCX1/NCX3 chimeric analysis. The results suggest that the first intracellular loop and the fifth transmembrane segment are mostly responsible for the differential drug responses between NCX1 and NCX3. Further site-directed mutagenesis revealed that multiple mutations at Phe-213 markedly reduced sensitivity to SEA0400 without affecting that to KB-R7943. We also found that Gly-833-to-Cys mutation (within the alpha-2 repeat) greatly reduced the inhibition by SEA0400, but unexpectedly the NCX1 chimera with an alpha-2 repeat from NCKX2 possessed normal drug sensitivity. In addition, exchangers with mutated exchanger inhibitory peptide regions, which display either undetectable or accelerated Na(+)-dependent inactivation, had a markedly reduced sensitivity or hypersensitivity to SEA0400, respectively. To verify the efficacy of the NCX inhibitor, we examined the renoprotective effect of SEA0400 in a hypoxic injury model using porcine renal tubular cells. SEA0400 protected against hypoxia/reoxygenation-induced cell damage in tubular cells expressing wild-type NCX1 but not in cells expressing SEA0400-insensitive mutants. These results suggest that Phe-213, Gly-833, and residues that eliminate Na(+)-dependent inactivation are critical determinants for the inhibition by SEA0400, and their mutants are very useful for checking the pharmacological importance of NCX inhibition by SEA0400.  相似文献   

11.
NO is known to modulate calcium handling and cellular signaling in the myocardium, but key targets for NO in the heart remain unidentified. Recent reports have implied that NO can activate calcium/calmodulin (Ca2+/CaM)-dependent protein kinase II (CaMKII) in neurons and the heart. Here we use our novel sensor of CaMKII activation, Camui, to monitor changes in the conformation and activation of cardiac CaMKII (CaMKIIδ) activity after treatment with the NO donor S-nitrosoglutathione (GSNO). We demonstrate that exposure to NO after Ca2+/CaM binding to CaMKIIδ results in autonomous kinase activation, which is abolished by mutation of the Cys-290 site. However, exposure of CaMKIIδ to GSNO prior to Ca2+/CaM exposure strongly suppresses kinase activation and conformational change by Ca2+/CaM. This NO-induced inhibition was ablated by mutation of the Cys-273 site. We found parallel effects of GSNO on CaM/CaMKIIδ binding and CaMKIIδ-dependent ryanodine receptor activation in adult cardiac myocytes. We conclude that NO can play a dual role in regulating cardiac CaMKIIδ activity.  相似文献   

12.
Store depletion has been shown to induce Ca2+ entry by Na+/Ca+ exchange (NCX) 1 reversal in proliferative vascular smooth muscle cells (VSMCs). The study objective was to investigate the role of transient receptor potential canonical (TRPC) channels in store depletion and NCX1 reversal in proliferative VSMCs. In cultured VSMCs, expressing TRPC1, TRPC4, and TRPC6, the removal of extracellular Na+ was followed by a significant increase of cytosolic Ca2+ concentration that was inhibited by KBR, a selective NCX1 inhibitor. TRPC1 knockdown significantly suppressed store-operated, channel-mediated Ca2+ entry, but TRPC4 knockdown and TRPC6 knockdown had no effect. Separate knockdown of TRPC1, TRPC4, or TRPC6 did not have a significant effect on thapsigargin-initiated Na+ increase in the peripheral regions with KBR treatment, but knockdown of both TRPC4 and TRPC6 did. Stromal interaction molecule (STIM)1 knockdown significantly reduced TRPC4 and TRPC6 binding. The results demonstrated that TRPC4–TRPC6 heteromultimerization linked Ca2+ store depletion and STIM1 accumulation with NCX reversal in proliferative VSMCs.  相似文献   

13.
Both signaling by nitric oxide (NO) and by the Ca2+/calmodulin (CaM)-dependent protein kinase II α isoform (CaMKIIα) are implicated in two opposing forms of synaptic plasticity underlying learning and memory, as well as in excitotoxic/ischemic neuronal cell death. For CaMKIIα, these functions specifically involve also Ca2+-independent autonomous activity, traditionally generated by Thr-286 autophosphorylation. Here, we demonstrate that NO-induced S-nitrosylation of CaMKIIα also directly generated autonomous activity, and that CaMKII inhibition protected from NO-induced neuronal cell death. NO induced S-nitrosylation at Cys-280/289, and mutation of either site abolished autonomy, indicating that simultaneous nitrosylation at both sites was required. Additionally, autonomy was generated only when Ca2+/CaM was present during NO exposure. Thus, generation of this form of CaMKIIα autonomy requires simultaneous signaling by NO and Ca2+. Nitrosylation also significantly reduced subsequent CaMKIIα autophosphorylation specifically at Thr-286, but not at Thr-305. A previously described reduction of CaMKII activity by S-nitrosylation at Cys-6 was also observed here, but only after prolonged (>5 min) exposure to NO donors. These results demonstrate a novel regulation of CaMKII by another second messenger system and indicate its involvement in excitotoxic neuronal cell death.  相似文献   

14.
Na+/Ca2+ exchange (NCX) is a major Ca2+ extrusion system in cardiac myocytes, but can also mediate Ca2+ influx and trigger sarcoplasmic reticulum Ca2+ release. Under conditions such as digitalis toxicity or ischemia/reperfusion, increased [Na+]i may lead to a rise in [Ca2+]i through NCX, causing Ca2+ overload and triggered arrhythmias. Here we used an agent which selectively blocks Ca2+ influx by NCX, KB-R7943 (KBR), and assessed twitch contractions and Ca2+ transients in rat and guinea pig ventricular myocytes loaded with indo-1. KBR (5 M) did not alter control steady-state twitch contractions or Ca2+ transients at 0.5 Hz in rat, but significantly decreased them in guinea pig myocytes. When cells were Na+-loaded by perfusion of strophanthidin (50 M), the addition of KBR reduced diastolic [Ca2+]i and abolished spontaneous Ca2+ oscillations. In guinea pig papillary muscles exposed to substrate-free hypoxic medium for 60 min, KBR (10 M applied 10 min before and during reoxygenation) reduced both the incidence and duration of reoxygenation-induced arrhythmias. KBR also enhanced the recovery of developed tension after reoxygenation. It is concluded that (1) the importance of Ca2+ influx via NCX for normal excitation-contraction coupling is species-dependent, and (2) Ca2+ influx via NCX may be critical in causing myocardial Ca2+ overload and triggered activities induced by cardiac glycoside or reoxygenation.  相似文献   

15.
The Na+/Ca2+ exchanger (NCX) is an ion transporter that exchanges Na+ and Ca2+ in either Ca2+ efflux or Ca2+ influx mode, depending on the ion gradients across the plasma membrane and the membrane potential. In heart, smooth muscle cells, neurons, and nephron cells, the NCX is thought to play an important role in the regulation of intracellular Ca2+ concentration. Recently, a novel selective inhibitor (KB-R7943 and SEA0400) of the Ca2+ influx mode of the NCX has been developed. NCX inhibitor is expected to be a pharmaceutical agent that offers effective protection against ischemia/reperfusion injury in several organs such as heart and kidney. Here, we summarize pharmacological profiles of KB-R7943 and SEA0400, the molecular mechanism of its action, and its future prospect as a novel pharmaceutical agent.  相似文献   

16.
Thrombin acts on the endothelium by activating protease-activated receptors (PARs). The endothelial thrombin-PAR system becomes deregulated during pathological conditions resulting in loss of barrier function and a pro-inflammatory and pro-angiogenic endothelial phenotype. We reported recently that the ion transporter Na+/Ca2+ exchanger (NCX) operating in the Ca2+-influx (reverse) mode promoted ERK1/2 activation and angiogenesis in vascular endothelial growth factor-stimulated primary human vascular endothelial cells. Here, we investigated whether Ca2+ influx through NCX was involved in ERK1/2 activation, angiogenesis, and endothelial barrier dysfunction in response to thrombin. Reverse-mode NCX inhibitors and RNAi-mediated NCX1 knockdown attenuated ERK1/2 phosphorylation in response to thrombin or an agonist of PAR-1, the main endothelial thrombin receptor. Conversely, promoting reverse-mode NCX by suppressing Na+-K+-ATPase activity enhanced ERK1/2 activation. Reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced primary human vascular endothelial cell angiogenesis, quantified as proliferation and tubular differentiation. Reverse-mode NCX inhibitors or NCX1 knockdown preserved barrier integrity upon thrombin stimulation in vitro. Moreover, the reverse-mode NCX inhibitor SEA0400 suppressed Evans'' blue albumin extravasation to the lung and kidneys and attenuated edema formation and ERK1/2 activation in the lungs of mice challenged with a peptide activator of PAR-1. Mechanistically, thrombin-induced ERK1/2 activation required NADPH oxidase 2-mediated reactive oxygen species (ROS) production, and reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced ROS production. We propose that reverse-mode NCX is a novel mechanism contributing to thrombin-induced angiogenesis and hyperpermeability by mediating ERK1/2 activation in a ROS-dependent manner. Targeting reverse-mode NCX could be beneficial in pathological conditions involving unregulated thrombin signaling.  相似文献   

17.
Phosphatidylinositol biphosphate (PtdIns-4,5P2) plays a key role in the regulation of the mammalian heart Na+/Ca2+ exchanger (NCX1) by protecting the intracellular Ca2+ regulatory site against H+i and (H+i + Na+i) synergic inhibition. MgATP and MgATP-γ-S up-regulation of NCX1 takes place via the production of this phosphoinositide. In microsomes containing PtdIns-4,5P2 incubated in the absence of MgATP and at normal [Na+]i, alkalinization increases the affinity for Ca2+i to the values seen in the presence of the nucleotide at normal pH; under this condition, addition of MgATP does not increase the affinity for Ca2+i any further. On the other hand, prevention of Na+i inhibition by alkalinization in the absence of MgATP does not take place when the microsomes are depleted of PtdIns-4,5P2. Experiments on NCX1–PtdIns-4,5P2 cross-coimmunoprecipitation show that the relevant PtdIns-4,5P2 is not the overall membrane component but specifically that tightly attached to NCX1. Consequently, the highest affinity of the Ca2+i regulatory site is seen in the deprotonated and PtdIns-4,5P2-bound NCX1. Confirming these results, a PtdIns-5-kinase also cross-coimmunoprecipitates with NCX1 without losing its functional competence. These observations indicate, for the first time, the existence of a PtdIns-5-kinase in the NCX1 microdomain.  相似文献   

18.
The mechanisms by which nitric oxide (NO) relaxes smooth muscles are unclear. The NO donor sodium nitroprusside (SNP) has been reported to increase the Ca2+ release frequency (Ca2+ sparks) through ryanodine receptors (RyRs) and activate spontaneous transient outward currents (STOCs), resulting in smooth muscle relaxation. Our findings that caffeine relaxes and hyperpolarizes murine gastric fundus smooth muscles and increases phospholamban (PLB) phosphorylation by Ca2+/calmodulin (CaM)-dependent protein kinase II (CaM kinase II) suggest that PLB phosphorylation by CaM kinase II participates in smooth muscle relaxation by increasing sarcoplasmic reticulum (SR) Ca2+ uptake and the frequencies of SR Ca2+ release events and STOCs. Thus, in the present study, we investigated the roles of CaM kinase II and PLB in SNP-induced relaxation of murine gastric fundus smooth muscles. SNP hyperpolarized and relaxed gastric fundus circular smooth muscles and activated CaM kinase II. SNP-induced CaM kinase II activation was prevented by KN-93. Ryanodine, tetracaine, 2-aminoethoxydiphenylborate, and cyclopiazonic acid inhibited SNP-induced fundus smooth muscle relaxation and CaM kinase II activation. The Ca2+-activated K+ channel blockers iberiotoxin and apamin inhibited SNP-induced hyperpolarization and relaxation. The soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-]quinoxalin-1-one inhibited SNP-induced relaxation and CaM kinase II activation. The membrane-permeable cGMP analog 8-bromo-cGMP relaxed gastric fundus smooth muscles and activated CaM kinase II. SNP increased phosphorylation of PLB at Ser16 and Thr17. Thr17 phosphorylation of PLB was inhibited by cyclopiazonic acid and KN-93. Ser16 and Thr17 phosphorylation of PLB was sensitive to 1H-[1,2,4]oxadiazolo-[4,3-]quinoxalin-1-one. These results demonstrate a novel pathway linking the NO-soluble guanylyl cyclase-cGMP pathway, SR Ca2+ release, PLB, and CaM kinase II to relaxation in gastric fundus smooth muscles. calcium signaling; nitric oxide; sodium nitroprusside; calmodulin  相似文献   

19.
Given the potential clinical benefit of inhibiting Na+/Ca2+ exchanger (NCX) activity during myocardial ischemia reperfusion (I/R), pharmacological approaches have been pursued to both inhibit and clarify the importance of this exchanger. SEA0400 was reported to have a potent NCX selectivity. Thus, we examined the effect of SEA0400 on NCX currents and I/R induced intracellular Ca2+ overload in mouse ventricular myocytes using patch clamp techniques and fluorescence measurements. Ischemia significantly inhibited inward and outward NCX current (from -0.04+/-0.01 nA to 0 nA at -100 mV; from 0.23+/-0.08 nA to 0.11+/-0.03 nA at +50 mV, n=7), Subsequent reperfusion not only restored the current rapidly but enhanced the current amplitude obviously, especially the outward currents (from 0.23+/-0.08 nA to 0.49+/-0.12 nA at +50 mV, n=7). [Ca2+]i, expressed as the ratio of Fura-2 fluorescence intensity, increased to 138+/-7% (P<0.01) during ischemia and to 210+/-11% (P<0.01) after reperfusion. The change of NCX current and the increase of [Ca2+]i during I/R can be blocked by SEA0400 in a dose-dependent manner with an EC50 value of 31 nM and 28 nM for the inward and outward NCX current, respectively. The results suggested that SEA0400 is a potent NCX inhibitor, which can protect mouse cardiac myocytes from Ca2+ overload during I/R injuries.  相似文献   

20.
Sodium nitroprusside (SNP) is an endothelium-independent relaxant agent and its effect is attributed to its direct action on the vascular smooth muscle (VSM). Endothelium modulates the vascular tone through the release of vasoactive agents, such as NO. The aim of this study was to investigate the contribution of the endothelium on SNP vasorelaxation, NO release and Ca2+ mobilization. Vascular reactivity experiments showed that endothelium potentiates the SNP-relaxation in rat aortic rings and this effect was abolished by l-NAME. SNP-relaxation in intact endothelium aorta was inhibited by NOS inhibitors for the constitutive isoforms (cNOS). Furthermore, endogenous NO is involved on the SNP-effect and this endogenous NO is released by cNOS. Moreover, Ca2+ mobilization study shows that l-NAME inhibited the reduction of Ca2+-concentration in VSM cells and reduced the increase in Ca2+-concentration in endothelial cells induced by SNP. This enhancement in Ca2+-concentration in the endothelial cells is due to a voltage-dependent Ca2+ channels activation. The present findings indicate that the relaxation and [Ca2+]i decrease induced by SNP in VSM cells is potentiated by endothelial production of NO by cNOS-activation in rat aorta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号