首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Li F  Frangakis CE 《Biometrics》2006,62(2):343-351
In an increasingly common class of studies, the goal is to evaluate causal effects of treatments that are only partially controlled by the investigator. In such studies there are two conflicting features: (1) a model on the full cohort design and data can identify the causal effects of interest, but can be sensitive to extreme regions of that design's data, where model specification can have more impact; and (2) models on a reduced design (i.e., a subset of the full data), for example, conditional likelihood on matched subsets of data, can avoid such sensitivity, but do not generally identify the causal effects. We propose a framework to assess how inference is sensitive to designs by exploring combinations of both the full and reduced designs. We show that using such a "polydesign" framework generates a rich class of methods that can identify causal effects and that can also be more robust to model specification than methods using only the full design. We discuss implementation of polydesign methods, and provide an illustration in the evaluation of a needle exchange program.  相似文献   

2.
Uniform consistency in causal inference   总被引:3,自引:0,他引:3  
  相似文献   

3.
Many scientific problems require that treatment comparisons be adjusted for posttreatment variables, but the estimands underlying standard methods are not causal effects. To address this deficiency, we propose a general framework for comparing treatments adjusting for posttreatment variables that yields principal effects based on principal stratification. Principal stratification with respect to a posttreatment variable is a cross-classification of subjects defined by the joint potential values of that posttreatment variable tinder each of the treatments being compared. Principal effects are causal effects within a principal stratum. The key property of principal strata is that they are not affected by treatment assignment and therefore can be used just as any pretreatment covariate. such as age category. As a result, the central property of our principal effects is that they are always causal effects and do not suffer from the complications of standard posttreatment-adjusted estimands. We discuss briefly that such principal causal effects are the link between three recent applications with adjustment for posttreatment variables: (i) treatment noncompliance, (ii) missing outcomes (dropout) following treatment noncompliance. and (iii) censoring by death. We then attack the problem of surrogate or biomarker endpoints, where we show, using principal causal effects, that all current definitions of surrogacy, even when perfectly true, do not generally have the desired interpretation as causal effects of treatment on outcome. We go on to forrmulate estimands based on principal stratification and principal causal effects and show their superiority.  相似文献   

4.
Hubbard AE  Laan MJ 《Biometrika》2008,95(1):35-47
We propose a new causal parameter, which is a natural extension of existing approaches to causal inference such as marginal structural models. Modelling approaches are proposed for the difference between a treatment-specific counterfactual population distribution and the actual population distribution of an outcome in the target population of interest. Relevant parameters describe the effect of a hypothetical intervention on such a population and therefore we refer to these models as population intervention models. We focus on intervention models estimating the effect of an intervention in terms of a difference and ratio of means, called risk difference and relative risk if the outcome is binary. We provide a class of inverse-probability-of-treatment-weighted and doubly-robust estimators of the causal parameters in these models. The finite-sample performance of these new estimators is explored in a simulation study.  相似文献   

5.
S Vansteelandt  C Lange 《Human genetics》2012,131(10):1665-1676
Over the past three decades, substantial developments have been made on how to infer the causal effect of an exposure on an outcome, using data from observational studies, with the randomized experiment as the golden standard. These developments have reshaped the paradigm of how to build statistical models, how to adjust for confounding, how to assess direct effects, mediated effects and interactions, and even how to analyze data from randomized experiments. The congruence of random transmission of alleles during meiosis and the randomization in controlled experiments/trials, suggests that genetic studies may lend themselves naturally to a causal analysis. In this contribution, we will reflect on this and motivate, through illustrative examples, where insights from the causal inference literature may help to understand and correct for typical biases in genetic effect estimates.  相似文献   

6.
7.
8.
Bayesian inference has emerged as a general framework that captures how organisms make decisions under uncertainty. Recent experimental findings reveal disparate mechanisms for how the brain generates behaviors predicted by normative Bayesian theories. Here, we identify two broad classes of neural implementations for Bayesian inference: a modular class, where each probabilistic component of Bayesian computation is independently encoded and a transform class, where uncertain measurements are converted to Bayesian estimates through latent processes. Many recent experimental neuroscience findings studying probabilistic inference broadly fall into these classes. We identify potential avenues for synthesis across these two classes and the disparities that, at present, cannot be reconciled. We conclude that to distinguish among implementation hypotheses for Bayesian inference, we require greater engagement among theoretical and experimental neuroscientists in an effort that spans different scales of analysis, circuits, tasks, and species.  相似文献   

9.
10.
Causal inference has been increasingly reliant on observational studies with rich covariate information. To build tractable causal procedures, such as the doubly robust estimators, it is imperative to first extract important features from high or even ultra-high dimensional data. In this paper, we propose causal ball screening for confounder selection from modern ultra-high dimensional data sets. Unlike the familiar task of variable selection for prediction modeling, our confounder selection procedure aims to control for confounding while improving efficiency in the resulting causal effect estimate. Previous empirical and theoretical studies suggest excluding causes of the treatment that are not confounders. Motivated by these results, our goal is to keep all the predictors of the outcome in both the propensity score and outcome regression models. A distinctive feature of our proposal is that we use an outcome model-free procedure for propensity score model selection, thereby maintaining double robustness in the resulting causal effect estimator. Our theoretical analyses show that the proposed procedure enjoys a number of properties, including model selection consistency and pointwise normality. Synthetic and real data analysis show that our proposal performs favorably with existing methods in a range of realistic settings. Data used in preparation of this paper were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.  相似文献   

11.
12.
Evaluation of impact of potential uncontrolled confounding is an important component for causal inference based on observational studies. In this article, we introduce a general framework of sensitivity analysis that is based on inverse probability weighting. We propose a general methodology that allows both non‐parametric and parametric analyses, which are driven by two parameters that govern the magnitude of the variation of the multiplicative errors of the propensity score and their correlations with the potential outcomes. We also introduce a specific parametric model that offers a mechanistic view on how the uncontrolled confounding may bias the inference through these parameters. Our method can be readily applied to both binary and continuous outcomes and depends on the covariates only through the propensity score that can be estimated by any parametric or non‐parametric method. We illustrate our method with two medical data sets.  相似文献   

13.
In this article, we provide a template for the practical implementation of the targeted maximum likelihood estimator for analyzing causal effects of multiple time point interventions, for which the methodology was developed and presented in Part I. In addition, the application of this template is demonstrated in two important estimation problems: estimation of the effect of individualized treatment rules based on marginal structural models for treatment rules, and the effect of a baseline treatment on survival in a randomized clinical trial in which the time till event is subject to right censoring.  相似文献   

14.
15.
When causal effects are to be estimated from observational data, we have to adjust for confounding. A central aim of covariate selection for causal inference is therefore to determine a set that is sufficient for confounding adjustment, but other aims such as efficiency or robustness can be important as well. In this paper, we review six general approaches to covariate selection that differ in the targeted type of adjustment set. We discuss and illustrate their advantages and disadvantages using causal diagrams. Moreover, the approaches and different ways of implementing them are compared empirically in an extensive simulation study. We conclude that there are considerable differences between the approaches but none of them is uniformly best, with performance depending on the chosen adjustment method as well as the true confounding structure. Any prior structural knowledge on the causal relations is helpful to choose the most appropriate method.  相似文献   

16.
17.
Doubly robust estimation in missing data and causal inference models   总被引:3,自引:0,他引:3  
Bang H  Robins JM 《Biometrics》2005,61(4):962-973
The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data and causal inference models. In a missing data model, an estimator is DR if it remains consistent when either (but not necessarily both) a model for the missingness mechanism or a model for the distribution of the complete data is correctly specified. Because with observational data one can never be sure that either a missingness model or a complete data model is correct, perhaps the best that can be hoped for is to find a DR estimator. DR estimators, in contrast to standard likelihood-based or (nonaugmented) inverse probability-weighted estimators, give the analyst two chances, instead of only one, to make a valid inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly specified. Because with observational data one can never be sure that a model for the treatment assignment mechanism or a model for the counterfactual data is correct, inference based on DR estimators should improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed method is applied to a cardiovascular clinical trial.  相似文献   

18.
Many spatial phenomena exhibit interference, where exposures at one location may affect the response at other locations. Because interference violates the stable unit treatment value assumption, standard methods for causal inference do not apply. We propose a new causal framework to recover direct and spill-over effects in the presence of spatial interference, taking into account that exposures at nearby locations are more influential than exposures at locations further apart. Under the no unmeasured confounding assumption, we show that a generalized propensity score is sufficient to remove all measured confounding. To reduce dimensionality issues, we propose a Bayesian spline-based regression model accounting for a sufficient set of variables for the generalized propensity score. A simulation study demonstrates the accuracy and coverage properties. We apply the method to estimate the causal effect of wildland fires on air pollution in the Western United States over 2005–2018.  相似文献   

19.
Time course experiments with microarrays have begun to provide a glimpse into the dynamic behavior of gene expression. In a typical experiment, scientists use microarrays to measure the abundance of mRNA at discrete time points after the onset of a stimulus. Recently, there has been much work on using these data to infer causal regulatory networks that model how genes influence each other. However, microarray studies typically have slow sampling rates that can lead to temporal aggregation of the signal. That is, each successive sampling point represents the sum of all signal changes since the previous sample. In this paper, we show that temporal aggregation can bias algorithms for causal inference and lead them to discover spurious relations that would not be found if the signal were sampled at a much faster rate. We discuss the implications of temporal aggregation on inference, the problems it creates, and potential directions for solutions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号