首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kunda P  Rohn JL  Baum B 《Current biology : CB》2008,18(11):R470-R472
Preservation of cell architecture under physically stressful conditions is a basic requirement for many biological processes and is critical for mechanosensory systems built to translate subtle changes in cell shape into changes in organism behaviour. A new study reveals how an extracellular protein--Spam--helps mechanosensory organs in the fruit fly to withstand the effects of the water loss that accompanies heat shock.  相似文献   

2.
Plant cytokinesis requires an orchestrated interplay of membrane and cytoskeleton dynamics, which results in the formation of the membrane that partitions the cytoplasm of the dividing cell. Until recently, phragmoplast-assisted cytokinesis of somatic cells was regarded as mechanistically different from 'non-conventional' modes of cytokinesis, such as endosperm cellularisation or male meiotic cytokinesis. However, features that are similar among these diverse modes of cytokinesis have now been revealed by electron tomography, suggesting common underlying mechanisms that are also supported by genetic and molecular studies. Further insight into the complex process of cytokinesis has been gained from the identification of new components and from the analysis of known components.  相似文献   

3.
Cellular responses to DNA damage are crucial for maintaining homeostasis and preventing the development of cancer. Our understanding of the DNA-damage response has evolved: whereas previously the focus was on DNA repair, we now appreciate that the response to DNA lesions involves a complex, highly branched signaling network. Defects in this response lead to severely debilitating, cancer-predisposing "genomic instability syndromes". Double strand breaks (DSBs) in DNA are potent triggers of the DNA-damage response, which is why they are used to study this pathway. The chief transducer of the DSB signal is the nuclear protein kinase ataxia-telangiectasia mutated (ATM). Genetic, biochemical and structural studies have recently provided insights into the ATM-mediated DSB response, reshaping our view of this signaling pathway while raising new questions.  相似文献   

4.
Endothelial signaling during development   总被引:15,自引:0,他引:15  
Blood vessels perfuse all tissues in the body and mediate vital metabolic exchange between tissues and blood. Increasing evidence, however, points to a direct role for paracrine signaling between blood vessel cells and surrounding target organ cells, during embryonic development and cell differentiation. Understanding the nature of this signaling and its heterogeneity, both in the embryo and in adult tissues, may not only provide insights into mechanisms for normal developmental cell fate decisions, but could also lead to novel targeted therapeutic approaches for a variety of diseases such as heart disease, diabetes or cancer.  相似文献   

5.
Protein folding taking shape: Workshop on molecular chaperones   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
The shape of a plant cell has long been the cornerstone of diverse areas of plant research but it is only recently that molecular-genetic and cell-biological tools have been effectively combined for dissecting plant cell morphogenesis. Increased understanding of the polar growth characteristics of model cell types, the availability of many morphological mutants and significant advances in fluorescent-protein-aided live-cell visualization have provided the major impetus for these analyses. The cytoskeleton and its regulators have emerged as essential components of the scaffold involved in fabricating plant cell shape. In this article, I collate information from recent discoveries to derive a simple cytoskeleton-based operational framework for plant cell morphogenesis.  相似文献   

8.
Blood flowing in arteries generates shear forces at the surface of the vascular endothelium that control its anti-atherogenic properties. However, due to the architecture of the vascular tree, these shear forces are heterogeneous and atherosclerotic plaques develop preferentially in areas where shear is low or disturbed. Here we review our recent study showing that elevated shear forces stimulate endothelial autophagic flux and that inactivating the endothelial macroautophagy/autophagy pathway promotes a proinflammatory, prosenescent and proapoptotic cell phenotype despite the presence of atheroprotective shear forces. Specific deficiency in endothelial autophagy in a murine model of atherosclerosis stimulates the development of atherosclerotic lesions exclusively in areas of the vasculature that are normally resistant to atherosclerosis. Our findings demonstrate that adequate endothelial autophagic flux limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence and inflammation.  相似文献   

9.
The spatial and temporal control of alternative splicing is a major mechanism used to generate proteomic diversity in the brain. Microarray and Next Generation Sequencing approaches reveal mechanistic insights about networks of tissue-specific RNA binding proteins and micro RNAs that coordinate suites of alternative splicing patterns during neuronal differentiation. In the context of large-scale changes, one alternative splicing switch during embryonic brain development is crucial for neuronal migration and the laminar organization of the cerebral cortex. A major challenge to understand alternative splicing at the systems level is now being approached by the design of integrative modeling approaches that predict the combinatorial control of brain-specific exons.  相似文献   

10.
The development of avian red cell shape   总被引:1,自引:0,他引:1  
  相似文献   

11.
Establishment and dynamic regulation of a higher order chromatin structure is an essential component of development. Chromatin remodelling complexes such as the SWI2/SNF2 family of ATP-dependent chromatin remodellers can alter chromatin architecture by changing nucleosome positioning or substituting histones with histone variants. These remodellers often act in concert with chromatin modifiers such as the polycomb group proteins which confer repressive states through modification of histone tails. These mechanisms are highly conserved across the eukaryotic kingdom although in plants, owing to the maintenance of dedifferentiated cell states that allow for post-embyronic changes in development, strict control of chromatin remodelling is even more paramount. Recent and ongoing studies in the model plant Arabidopsis thaliana have found that while the major families of the SWI2/SNF2 ATPase chromatin remodellers are represented, a number of redundancies and divergent functions have emerged that show a break from the roles of their metazoan counterparts. This review focusses on the SNF2 and CHD families of ATP-dependent remodellers and their roles in plant development.  相似文献   

12.
The molecules and environment that direct pluripotent stem cell differentiation into cardiomyocytes are largely unknown. Here, we determined a critical role of receptor tyrosine kinase, EphB4, in regulating cardiomyocyte generation from embryonic stem (ES) cells through endothelial cells. The number of spontaneous contracting cardiomyocytes, and the expression of cardiac‐specific genes, including α‐MHC and MLC‐2V, was significantly decreased in EphB4‐null ES cells. EphB4 was expressed in endothelial cells underneath contracting cardiomyocytes, but not in cardiomyocytes. Angiogenic inhibitors, including endostatin and angiostatin, inhibited endothelial cell differentiation and diminished cardiomyogenesis in ES cells. Generation of functional cardiomyocytes and the expression of cardiac‐specific genes were significantly enhanced by co‐culture of ES cells with human endothelial cells. Furthermore, the defects of cardiomyocyte differentiation in EphB4‐deficient ES cells were rescued by human endothelial cells. For the first time, our study demonstrated that endothelial cells play an essential role in facilitating cardiomyocyte differentiation from pluripotent stem cells. EphB4 signaling is a critical component of the endothelial niche to regulate regeneration of cardiomyocytes. J. Cell. Biochem. 111: 29–39, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Cell-cycle control during development: taking it up a notch   总被引:5,自引:0,他引:5  
The signals that coordinate cellular proliferation with G1 arrest and differentiation have long been of interest. Two papers in this issue of Developmental Cell show that the conserved Hedgehog and Notch signaling pathways regulate cell division during development of the Drosophila compound eye.  相似文献   

14.
15.
16.
17.
18.
19.
The synapse is the most elementary operating unit in neurons, creating neural circuits that underlie all brain functions. Synaptic adhesion molecules initiate neuronal synapse connections, promote their stabilization and refinement, and control long-term synaptic plasticity. Leukocyte common antigen-related receptor protein tyrosine phosphatases (LAR-RPTPs) have previously been implicated as essential elements in central nervous system (CNS) development. Recent studies have demonstrated that LAR-RPTP family members are also involved in diverse synaptic functions, playing a role in synaptic adhesion pathways together with a host of distinct transmembrane proteins and serving as major synaptic adhesion molecules in governing pre- and postsynaptic development, dysfunctions of which may underlie various disorders. This review highlights the emerging role of LAR-RPTPs as synapse organizers in orchestrating synapse development.  相似文献   

20.
Patients with type 1 diabetes, aged 18 to 42 years, were compared to those aged 11 to 22 years. Activities of endothelial vasoactive factors and endothelial and leukocyte adhesion molecules were studied at different stages of development diabetes complications: nephropathy and retinopathy. The findings reveal role of the vasoactive factors in microangiopathy course.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号