首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complexity of nervous systems alters the evolvability of behaviour. Complex nervous systems are phylogenetically constrained; nevertheless particular species-specific behaviours have repeatedly evolved, suggesting a predisposition towards those behaviours. Independently evolved behaviours in animals that share a common neural architecture are generally produced by homologous neural structures, homologous neural pathways and even in the case of some invertebrates, homologous identified neurons. Such parallel evolution has been documented in the chromatic sensitivity of visual systems, motor behaviours and complex social behaviours such as pair-bonding. The appearance of homoplasious behaviours produced by homologous neural substrates suggests that there might be features of these nervous systems that favoured the repeated evolution of particular behaviours. Neuromodulation may be one such feature because it allows anatomically defined neural circuitry to be re-purposed. The developmental, genetic and physiological mechanisms that contribute to nervous system complexity may also bias the evolution of behaviour, thereby affecting the evolvability of species-specific behaviour.  相似文献   

2.
3.
We describe a class of feed forward neural network models for associative content addressable memory (ACAM) which utilize sparse internal representations for stored data. In addition to the input and output layers, our networks incorporate an intermediate processing layer which serves to label each stored memory and to perform error correction and association. We study two classes of internal label representations: the unary representation and various sparse, distributed representations. Finally, we consider storage of sparse data and sparsification of data. These models are found to have advantages in terms of storage capacity, hardware efficiency, and recall reliability when compared to the Hopfield model, and to possess analogies to both biological neural networks and standard digital computer memories.  相似文献   

4.
Self-organizing artificial neural networks are a popular tool for studying visual system development, in particular the cortical feature maps present in real systems that represent properties such as ocular dominance (OD), orientation-selectivity (OR) and direction selectivity (DS). They are also potentially useful in artificial systems, for example robotics, where the ability to extract and learn features from the environment in an unsupervised way is important. In this computational study we explore a DS map that is already latent in a simple artificial network. This latent selectivity arises purely from the cortical architecture without any explicit coding for DS and prior to any self-organising process facilitated by spontaneous activity or training. We find DS maps with local patchy regions that exhibit features similar to maps derived experimentally and from previous modeling studies. We explore the consequences of changes to the afferent and lateral connectivity to establish the key features of this proto-architecture that support DS.  相似文献   

5.
Many cognitive and sensorimotor functions in the brain involve parallel and modular memory subsystems that are adapted by activity-dependent Hebbian synaptic plasticity. This is in contrast to the multilayer perceptron model of supervised learning where sensory information is presumed to be integrated by a common pool of hidden units through backpropagation learning. Here we show that Hebbian learning in parallel and modular memories is more advantageous than backpropagation learning in lumped memories in two respects: it is computationally much more efficient and structurally much simpler to implement with biological neurons. Accordingly, we propose a more biologically relevant neural network model, called a tree-like perceptron, which is a simple modification of the multilayer perceptron model to account for the general neural architecture, neuronal specificity, and synaptic learning rule in the brain. The model features a parallel and modular architecture in which adaptation of the input-to-hidden connection follows either a Hebbian or anti-Hebbian rule depending on whether the hidden units are excitatory or inhibitory, respectively. The proposed parallel and modular architecture and implicit interplay between the types of synaptic plasticity and neuronal specificity are exhibited by some neocortical and cerebellar systems. Received: 13 October 1996 / Accepted in revised form: 16 October 1997  相似文献   

6.
We report on both analytical and numerical results concerning stochastic Hopfield-like neural automata exhibiting the following (biologically inspired) features: (1) Neurons and synapses evolve in time as in contact with respective baths at different temperatures; (2) the connectivity between neurons may be tuned from full connection to high random dilution, or to the case of networks with the small-world property and/or scale-free architecture; and (3) there is synaptic kinetics simulating repeated scanning of the stored patterns. Although these features may apparently result in additional disorder, the model exhibits, for a wide range of parameter values, an extraordinary computational performance, and some of the qualitative behaviors observed in natural systems. In particular, we illustrate here very efficient and robust associative memory, and jumping between pattern attractors.  相似文献   

7.
Sparse coding has long been recognized as a primary goal of image transformation in the visual system. Sparse coding in early visual cortex is achieved by abstracting local oriented spatial frequencies and by excitatory/inhibitory surround modulation. Object responses are thought to be sparse at subsequent processing stages, but neural mechanisms for higher-level sparsification are not known. Here, convergent results from macaque area V4 neural recording and simulated V4 populations trained on natural object contours suggest that sparse coding is achieved in midlevel visual cortex by emphasizing representation of acute convex and concave curvature. We studied 165 V4 neurons with a random, adaptive stimulus strategy to minimize bias and explore an unlimited range of contour shapes. V4 responses were strongly weighted toward contours containing acute convex or concave curvature. In contrast, the tuning distribution in nonsparse simulated V4 populations was strongly weighted toward low curvature. But as sparseness constraints increased, the simulated tuning distribution shifted progressively toward more acute convex and concave curvature, matching the neural recording results. These findings indicate a sparse object coding scheme in midlevel visual cortex based on uncommon but diagnostic regions of acute contour curvature.  相似文献   

8.
9.
Four suites of behavioral traits have been associated with four broad neural systems: the 1) dopamine and related norepinephrine system; 2) serotonin; 3) testosterone; 4) and estrogen and oxytocin system. A 56-item questionnaire, the Fisher Temperament Inventory (FTI), was developed to define four temperament dimensions associated with these behavioral traits and neural systems. The questionnaire has been used to suggest romantic partner compatibility. The dimensions were named: Curious/Energetic; Cautious/Social Norm Compliant; Analytical/Tough-minded; and Prosocial/Empathetic. For the present study, the FTI was administered to participants in two functional magnetic resonance imaging studies that elicited feelings of love and attachment, near-universal human experiences. Scores for the Curious/Energetic dimension co-varied with activation in a region of the substantia nigra, consistent with the prediction that this dimension reflects activity in the dopamine system. Scores for the Cautious/Social Norm Compliant dimension correlated with activation in the ventrolateral prefrontal cortex in regions associated with social norm compliance, a trait linked with the serotonin system. Scores on the Analytical/Tough-minded scale co-varied with activity in regions of the occipital and parietal cortices associated with visual acuity and mathematical thinking, traits linked with testosterone. Also, testosterone contributes to brain architecture in these areas. Scores on the Prosocial/Empathetic scale correlated with activity in regions of the inferior frontal gyrus, anterior insula and fusiform gyrus. These are regions associated with mirror neurons or empathy, a trait linked with the estrogen/oxytocin system, and where estrogen contributes to brain architecture. These findings, replicated across two studies, suggest that the FTI measures influences of four broad neural systems, and that these temperament dimensions and neural systems could constitute foundational mechanisms in personality structure and play a role in romantic partnerships.  相似文献   

10.
11.
The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain– machine interfaces (BMIs). Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain– machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than . We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA) implementation of this portion is consequently energy efficient. We validate the performance of our overall system by decoding electrophysiologic data from a behaving rodent.  相似文献   

12.
The lamprey is the only basal vertebrate in which large-scale gene perturbation analyses are feasible at present. Studies on this unique animal model promise to contribute both to the understanding of the basic neural-crest gene regulatory network architecture, and evolution of the neural crest. In this review, we summarize the currently known regulatory relationships underlying formation of the vertebrate neural crest, and discuss new ways of addressing the many remaining questions using lamprey as an experimental model.  相似文献   

13.
The nervous systems of animals as diverse as flies and mice share many conserved features, suggesting that such features were already present in their last common ancestor. As our knowledge of neural development increases, so does the list of conserved features, pointing to the existence of a highly sophisticated, single species as the origin of most extant nervous systems. Possible reasons for this unexpected monophyly are discussed, leading to the conclusion that the appearance of very different life forms, lifestyles and habitats requires the previous attainment of a neural circuitry that is sufficiently robust to cope with large changes without losing its overall coherence.  相似文献   

14.
Folding of the primate brain cortex allows for improved neural processing power by increasing cortical surface area for the allocation of neurons. The arrangement of folds (sulci) and ridges (gyri) across the cerebral cortex is thought to reflect the underlying neural network. Gyrification, an adaptive trait with a unique evolutionary history, is affected by genetic factors different from those affecting brain volume. Using a large pedigreed population of ∼1000 Papio baboons, we address critical questions about the genetic architecture of primate brain folding, the interplay between genetics, brain anatomy, development, patterns of cortical–cortical connectivity, and gyrification’s potential for future evolution. Through Mantel testing and cluster analyses, we find that the baboon cortex is quite evolvable, with high integration between the genotype and phenotype. We further find significantly similar partitioning of variation between cortical development, anatomy, and connectivity, supporting the predictions of tension-based models for sulcal development. We identify a significant, moderate degree of genetic control over variation in sulcal length, with gyrus-shape features being more susceptible to environmental effects. Finally, through QTL mapping, we identify novel chromosomal regions affecting variation in brain folding. The most significant QTL contain compelling candidate genes, including gene clusters associated with Williams and Down syndromes. The QTL distribution suggests a complex genetic architecture for gyrification with both polygeny and pleiotropy. Our results provide a solid preliminary characterization of the genetic basis of primate brain folding, a unique and biomedically relevant phenotype with significant implications in primate brain evolution.  相似文献   

15.
In the absence of sensory stimulation, neocortical circuits display complex patterns of neural activity. These patterns are thought to reflect relevant properties of the network, including anatomical features like its modularity. It is also assumed that the synaptic connections of the network constrain the repertoire of emergent, spontaneous patterns. Although the link between network architecture and network activity has been extensively investigated in the last few years from different perspectives, our understanding of the relationship between the network connectivity and the structure of its spontaneous activity is still incomplete. Using a general mathematical model of neural dynamics we have studied the link between spontaneous activity and the underlying network architecture. In particular, here we show mathematically how the synaptic connections between neurons determine the repertoire of spatial patterns displayed in the spontaneous activity. To test our theoretical result, we have also used the model to simulate spontaneous activity of a neural network, whose architecture is inspired by the patchy organization of horizontal connections between cortical columns in the neocortex of primates and other mammals. The dominant spatial patterns of the spontaneous activity, calculated as its principal components, coincide remarkably well with those patterns predicted from the network connectivity using our theory. The equivalence between the concept of dominant pattern and the concept of attractor of the network dynamics is also demonstrated. This in turn suggests new ways of investigating encoding and storage capabilities of neural networks.  相似文献   

16.
NETASA: neural network based prediction of solvent accessibility   总被引:3,自引:0,他引:3  
MOTIVATION: Prediction of the tertiary structure of a protein from its amino acid sequence is one of the most important problems in molecular biology. The successful prediction of solvent accessibility will be very helpful to achieve this goal. In the present work, we have implemented a server, NETASA for predicting solvent accessibility of amino acids using our newly optimized neural network algorithm. Several new features in the neural network architecture and training method have been introduced, and the network learns faster to provide accuracy values, which are comparable or better than other methods of ASA prediction. RESULTS: Prediction in two and three state classification systems with several thresholds are provided. Our prediction method achieved the accuracy level upto 90% for training and 88% for test data sets. Three state prediction results provide a maximum 65% accuracy for training and 63% for the test data. Applicability of neural networks for ASA prediction has been confirmed with a larger data set and wider range of state thresholds. Salient differences between a linear and exponential network for ASA prediction have been analysed. AVAILABILITY: Online predictions are freely available at: http://www.netasa.org. Linux ix86 binaries of the program written for this work may be obtained by email from the corresponding author.  相似文献   

17.
Kristan WB  Katz P 《Current biology : CB》2006,16(19):R828-R831
'Form follows function' is an architectural philosophy attributed to the great American architect Louis Sullivan, and later taken up by the Bauhaus movement. It stresses that the form of a building should reflect its function. Neuroscientists have used the converse of this dictum to learn the functions of neural circuits, believing that if we study neural architecture, it will lead us to an understanding of how neural systems function. New tools for studying the structure of neural circuits are being developed, so it is important to discuss what the old techniques have taught us about how to derive function from the form of a neural circuit.  相似文献   

18.
Nervous systems extract and process information from the environment to alter animal behavior and physiology. Despite progress in understanding how different stimuli are represented by changes in neuronal activity, less is known about how they affect broader neural network properties. We developed a framework for using graph-theoretic features of neural network activity to predict ecologically relevant stimulus properties, in particular stimulus identity. We used the transparent nematode, Caenorhabditis elegans, with its small nervous system to define neural network features associated with various chemosensory stimuli. We first immobilized animals using a microfluidic device and exposed their noses to chemical stimuli while monitoring changes in neural activity of more than 50 neurons in the head region. We found that graph-theoretic features, which capture patterns of interactions between neurons, are modulated by stimulus identity. Further, we show that a simple machine learning classifier trained using graph-theoretic features alone, or in combination with neural activity features, can accurately predict salt stimulus. Moreover, by focusing on putative causal interactions between neurons, the graph-theoretic features were almost twice as predictive as the neural activity features. These results reveal that stimulus identity modulates the broad, network-level organization of the nervous system, and that graph theory can be used to characterize these changes.  相似文献   

19.
The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter , and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of , resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real networks. The discrepancy suggests that there are further relevant factors that are not yet captured here.  相似文献   

20.
Recent neuropsychological research has begun to reveal that neurons encode information in the timing of spikes. Spiking neural network simulations are a flexible and powerful method for investigating the behaviour of neuronal systems. Simulation of the spiking neural networks in software is unable to rapidly generate output spikes in large-scale of neural network. An alternative approach, hardware implementation of such system, provides the possibility to generate independent spikes precisely and simultaneously output spike waves in real time, under the premise that spiking neural network can take full advantage of hardware inherent parallelism. We introduce a configurable FPGA-oriented hardware platform for spiking neural network simulation in this work. We aim to use this platform to combine the speed of dedicated hardware with the programmability of software so that it might allow neuroscientists to put together sophisticated computation experiments of their own model. A feed-forward hierarchy network is developed as a case study to describe the operation of biological neural systems (such as orientation selectivity of visual cortex) and computational models of such systems. This model demonstrates how a feed-forward neural network constructs the circuitry required for orientation selectivity and provides platform for reaching a deeper understanding of the primate visual system. In the future, larger scale models based on this framework can be used to replicate the actual architecture in visual cortex, leading to more detailed predictions and insights into visual perception phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号