首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It has been previously demonstrated that ammonia exposure of neurons and astrocytes in co-culture leads to net synthesis not only of glutamine but also of alanine. The latter process involves the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT). In the present study it was investigated if the glutamine synthetase (GS) inhibitor methionine sulfoximine (MSO) would enhance alanine synthesis by blocking the GS-dependent ammonia scavenging process. Hence, co-cultures of neurons and astrocytes were incubated for 2.5 h with [U-13C]glucose to monitor de novo synthesis of alanine and glutamine in the absence and presence of 5.0 mM NH4Cl and 10 mM MSO. Ammonia exposure led to increased incorporation of label but not to a significant increase in the amount of these amino acids. However, in the presence of MSO, glutamine synthesis was blocked and synthesis of alanine increased leading to an elevated content intra- as well as extracellularly of this amino acid. Treatment with MSO led to a dramatic decrease in glutamine content and increased the intracellular contents of glutamate and aspartate. The large increase in alanine during exposure to MSO underlines the importance of the GDH and ALAT biosynthetic pathway for ammonia fixation, and it points to the use of a GS inhibitor to ameliorate the brain toxicity and edema induced by hyperammonemia, events likely related to glutamine synthesis.  相似文献   

2.
In the brain, glutamine synthetase (GS), which is located predominantly in astrocytes, is largely responsible for the removal of both blood-derived and metabolically generated ammonia. Thus, studies with [13N]ammonia have shown that about 25?% of blood-derived ammonia is removed in a single pass through the rat brain and that this ammonia is incorporated primarily into glutamine (amide) in astrocytes. Major pathways for cerebral ammonia generation include the glutaminase reaction and the glutamate dehydrogenase (GDH) reaction. The equilibrium position of the GDH-catalyzed reaction in vitro favors reductive amination of α-ketoglutarate at pH 7.4. Nevertheless, only a small amount of label derived from [13N]ammonia in rat brain is incorporated into glutamate and the α-amine of glutamine in vivo. Most likely the cerebral GDH reaction is drawn normally in the direction of glutamate oxidation (ammonia production) by rapid removal of ammonia as glutamine. Linkage of glutamate/α-ketoglutarate-utilizing aminotransferases with the GDH reaction channels excess amino acid nitrogen toward ammonia for glutamine synthesis. At high ammonia levels and/or when GS is inhibited the GDH reaction coupled with glutamate/α-ketoglutarate-linked aminotransferases may, however, promote the flow of ammonia nitrogen toward synthesis of amino acids. Preliminary evidence suggests an important role for the purine nucleotide cycle (PNC) as an additional source of ammonia in neurons (Net reaction: l-Aspartate?+?GTP?+?H2O?→?Fumarate?+?GDP?+?Pi?+?NH3) and in the beat cycle of ependyma cilia. The link of the PNC to aminotransferases and GDH/GS and its role in cerebral nitrogen metabolism under both normal and pathological (e.g. hyperammonemic encephalopathy) conditions should be a productive area for future research.  相似文献   

3.
Excretion of nitrogenous substances by Teladorsagia circumcincta was investigated during incubation of L3 in phosphate buffer for up to 30 h and adult worms for 4-6 h. Ammonia was the main excretory product, with about 20% urea. For the first 4-6 h, ammonia excretion by L3 was temperature dependent, directly proportional to the number of larvae, but independent of the pH or strength of the phosphate buffer. Later, ammonia excretion slowed markedly in L3 and adults and reversed to net uptake in L3 by 30 h. An initial external ammonia concentration of 600 μM did not alter the pattern or magnitude of excretion. Re-uptake of ammonia did not occur at extremes of pH or low buffer strength and was slightly reduced at the highest external concentrations. Ammonium transporters and enzymes of glutamate metabolism, including glutamate dehydrogenase, glutamine synthetase and possibly glutamate synthase, are worthy of further investigation as anthelmintic targets.  相似文献   

4.
5.
Cystathionine γ-lyase (CGL) catalyzes the hydrolysis of l-cystathionine (l-Cth), producing l-cysteine (l-Cys), α-ketobutyrate and ammonia, in the second step of the reverse transsulfuration pathway, which converts l-homocysteine (l-Hcys) to l-Cys. Site-directed variants substituting residues E48 and E333 with alanine, aspartate and glutamine were characterized to probe the roles of these acidic residues, conserved in fungal and mammalian CGL sequences, in the active-site of CGL from Saccharomyces cerevisiae (yCGL). The pH optimum of variants containing the alanine or glutamine substitutions of E333 is increased by 0.4–1.2 pH units, likely due to repositioning of the cofactor and modification of the pKa of the pyridinium nitrogen. The pH profile of yCGL-E48A/E333A resembles that of Escherichia coli cystathionine β-lyase. The effect of substituting E48, E333 or both residues is the 1.3–3, 26–58 and 124–568-fold reduction, respectively, of the catalytic efficiency of l-Cth hydrolysis. The Kml-Cth of E333 substitution variants is increased ~ 17-fold, while Kml-OAS is within 2.5-fold of the wild-type enzyme, indicating that residue E333 interacts with the distal amine moiety of l-Cth, which is not present in the alternative substrate O-acetyl-l-serine. The catalytic efficiency of yCGL for α,γ-elimination of O-succinyl-l-homoserine (kcat/Kml-OSHS = 7 ± 2), which possesses a distal carboxylate, but lacks an amino group, is 300-fold lower than that of the physiological l-Cth substrate (kcat/Kml-Cth = 2100 ± 100) and 260-fold higher than that of l-Hcys (kcat/Kml-Hcys = 0.027 ± 0.005), which lacks both distal polar moieties. The results of this study suggest that the glutamate residue at position 333 is a determinant of specificity.  相似文献   

6.
Since glucose is the main cerebral substrate, we have characterized the metabolism of various 13C glucose isotopomers in rat brain slices. For this, we have used our cellular metabolomic approach that combines enzymatic and carbon 13 NMR techniques with mathematical models of metabolic pathways. We identified the fate and the pathways of the conversion of glucose carbons into various products (pyruvate, lactate, alanine, aspartate, glutamate, GABA, glutamine and CO2) and determined absolute fluxes through pathways of glucose metabolism. After 60 min of incubation, lactate and CO2 were the main end-products of the metabolism of glucose which was avidly metabolized by the slices. Lactate was also used at high rates by the slices and mainly converted into CO2. High values of flux through pyruvate carboxylase, which were similar with glucose and lactate as substrate, were observed. The addition of glutamine, but not of acetate, stimulated pyruvate carboxylation, the conversion of glutamate into succinate and fluxes through succinate dehydrogenase, malic enzyme, glutamine synthetase and aspartate aminotransferase. It is concluded that, unlike brain cells in culture, and consistent with high fluxes through PDH and enzymes of the tricarboxylic acid cycle, rat brain slices oxidized both glucose and lactate at high rates.  相似文献   

7.
Nitrogen fixation of terrestrial legumes is strongly and rapidly diminished under flooding. Although recovery is possible with the formation of aerenchyma, information is scarce regarding recovery after draining following short-term flooding, before the appearance of morphological adaptations. This study used soybean (Glycine max) plants nodulated with Bradyrhizobium elkanii to determine xylem sap glutamine as an indication of nitrogen fixation activity during recovery from different periods of flooding. Xylem glutamine levels showed rapid recovery (within 90 min) following periods of flooding up to 4 h. Recovery was progressively slower after longer periods of flooding. After 48 h flooding very little recovery could be observed within the first 120 min after draining but recovery was possible within 48 h. Consistent with the changes in xylem glutamine, direct measurements of apparent nitrogenase activity carried out immediately on draining revealed rapid recovery after flooding for 1 h and slow recovery following 48 h of flooding. In the latter case, nitrogenase activity largely recovered 24 h after draining. Experiments with 15N2 incorporation into amino acids exported in the xylem sap revealed that glutamine was by far the most highly labelled amino acid in sap collected over the first 30 min of exposure to the isotope. This is conclusive evidence that xylem sap glutamine is an immediate product of N2 fixation and export. The changes in xylem sap glutamine seen on flooding (decline) and after draining (recovery) can therefore be attributed to changes in nitrogenase activity. The data show that xylem sap glutamine is a useful means for assessing changes in nitrogenase activity, especially when the root system is submersed in water and activity cannot be measured directly.  相似文献   

8.
The GroEL/GroES protein folding chamber is formed and dissociated by ATP binding and hydrolysis. ATP hydrolysis in the GroES-bound (cis) ring gates entry of ATP into the opposite unoccupied trans ring, which allosterically ejects cis ligands. While earlier studies suggested that hydrolysis of cis ATP is the rate-limiting step of the cycle (t½ ∼ 10 s), a recent study suggested that ADP release from the cis ring may be rate-limiting (t½ ∼ 15-20 s). Here we have measured ADP release using a coupled enzyme assay and observed a t½ for release of ?4-5 s, indicating that this is not the rate-limiting step of the reaction cycle.  相似文献   

9.
Caspase-3 is responsible for the cleavage of several proteins including the nuclear enzyme poly(ADP-ribose) polymerase (PARP). Designed on the cleavage site of PARP, Ac-Asp-Glu-Val-Asp-H has been reported as a highly specific inhibitor. To overcome the susceptibility to proteolysis, the intrinsic instability, and the scarce membrane permeability of tetra-peptidyl aldehydes, di- and tri-peptidyl caspase-3 inhibitors have been synthesized. Here, the synthesis and the inhibition properties of peptidyl aldehydes Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H are reported. Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H inhibit competitively human caspase-3 activity in vitro with  = 3.6 nM, 18.2 nM, and 109 nM, respectively (pH 7.4 and 25 °C). Moreover, Z-tLeu-Asp-H impairs apoptosis in human DLD-1 colon adenocarcinoma cells without affecting caspase-8. Therefore, Ac-Asp-Glu-Val-Asp-H can be truncated to Z-tLeu-Asp-H retaining nanomolar inhibitory activity in vitro and displaying action in whole cells, these properties reflect the unprecedented introduction of the bulky and lipophilic tLeu residue at the P2 position.  相似文献   

10.
The objective of this study was to determine the response of nitrogen metabolism to drought and recovery upon rewatering in barley (Hordeum vulgare L.) plants under ambient (350 μmol mol−1) and elevated (700 μmol mol−1) CO2 conditions. Barley plants of the cv. Iranis were subjected to drought stress for 9, 13, or 16 days. The effects of drought under each CO2 condition were analysed at the end of each drought period, and recovery was analysed 3 days after rewatering 13-day droughted plants. Soil and plant water status, protein content, maximum (NRmax) and actual (NRact) nitrate reductase, glutamine synthetase (GS), and aminant (NADH-GDH) and deaminant (NAD-GDH) glutamate dehydrogenase activities were analysed. Elevated CO2 concentration led to reduced water consumption, delayed onset of drought stress, and improved plant water status. Moreover, in irrigated plants, elevated CO2 produced marked changes in plant nitrogen metabolism. Nitrate reduction and ammonia assimilation were higher at elevated than at ambient CO2, which in turn yielded higher protein content. Droughted plants showed changes in water status and in foliar nitrogen metabolism. Leaf water potential (Ψw) and nitrogen assimilation rates decreased after the onset of water deprivation. NRact and NRmax activity declined rapidly in response to drought. Similarly, drought decreased GS whereas NAD-GDH rose. Moreover, protein content fell dramatically in parallel with decreased leaf Ψw. In contrast, elevated CO2 reduced the water stress effect on both nitrate reduction and ammonia assimilation coincident with a less-steep decrease in Ψw. On the other hand, Ψw practically reached control levels after 3 days of rewatering. In parallel with the recovery of plant water status, nitrogen metabolism was also restored. Thus, both NRact and NRmax activities were restored to about 75-90% of control levels when water supply was restored; the GS activity reached 80-90% of control values; and GDH activities and protein content were similar to those of control plants. The recovery was always faster and slightly higher in plants grown under elevated CO2 conditions compared to those grown in ambient CO2, but midday Ψw dropped to similar values under both CO2 conditions. The results suggest that elevated CO2 improves nitrogen metabolism in droughted plants by maintaining better water status and enhanced photosynthesis performance, allowing superior nitrate reduction and ammonia assimilation. Ultimately, elevated CO2 mitigates many of the effects of drought on nitrogen metabolism and allows more rapid recovery following water stress.  相似文献   

11.
PhzE from Pseudomonas aeruginosa catalyzes the first step in the biosynthesis of phenazine-1-carboxylic acid, pyocyanin, and other phenazines, which are virulence factors for Pseudomonas species. The reaction catalyzed converts chorismate into aminodeoxyisochorismate using ammonia supplied by a glutamine amidotransferase domain. It has structural and sequence homology to other chorismate-utilizing enzymes such as anthranilate synthase, isochorismate synthase, aminodeoxychorismate synthase, and salicylate synthase. Like these enzymes, it is Mg2 + dependent and catalyzes a similar SN2" nucleophilic substitution reaction. PhzE catalyzes the addition of ammonia to C2 of chorismate, as does anthranilate synthase, yet unlike anthranilate synthase it does not catalyze elimination of pyruvate from enzyme-bound aminodeoxyisochorismate. Herein, the cloning of the phzE gene, high level expression of active enzyme in E. coli, purification, and kinetic characterization of the enzyme is presented, including temperature and pH dependence. Steady-state kinetics give Kchorismate = 20 ± 4 μM, KMg2 + = 294 ± 22 μM, KL-gln = 11 ± 1 mM, and kcat = 2.2 ± 0.2 s− 1 for a random kinetic mechanism. PhzE can use NH4+ as an alternative nucleophile, while Co2 + and Mn2 + are alternative divalent metals.  相似文献   

12.
Various enzymes involved in the initial metabolic pathway for ammonia assimilation by Methanobacterium ivanovii were examined. M. ivanovii showed significant activity of glutamine synthetase (GS). Glutamate synthase (GOGAT) and alanine dehydrogenase (ADH) were present, wheras, glutamate dehydrogenase (GDH) was not detected. When M. ivanovii was grown with different levels of NH + 4 (i.e. 2, 20 or 200 mM), GS, GOGAT and ADH activities varied in response to NH + 4 concentration. ADH was not detected at 2 mM level, but its activity increased with increased levels of NH + 4 in the medium. Both GS and GOGAT activities increased with decreasing concentrations of NH + 4 and were maximum when ammonia was limiting, suggesting that at low NH + 4 levels, GS and GOGAT are responsible for ammonia assimilation and at higher NH + 4 levels, ADH might play a role. Metabolic mutants of M. ivanovii that were auxotrophic for glutamine were obtained and analyzed for GS activity. Results indicate two categories of mutants: i) GS-deficient auxotrophic mutants and ii) GS-impaired auxotrophic mutants.Abbreviations GS Glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

13.
dl-Praeruptorin A (Pd-Ia), isolated from Chinese traditional herbal medicine Peucedanum praeruptorum Dunn, has been proved to be a novel Ca2+-influx blocker and K+-channel opener, and displayed bright prospects in prevention and therapy of cardiac diseases. The aim of this study was to investigate the pharmacokinetics, tissue distribution and excretion of Pd-Ia in rats following a single intravenous (i.v.) administration. The levels of Pd-Ia in plasma, tissues, bile, urine and feces were measured by a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The results showed that Pd-Ia was rapidly distributed and then eliminated from rat plasma and manifested linear dynamics in dose range of 5-20 mg/kg. The mean elimination half-life (t1/2) of Pd-Ia for 5, 10 and 20 mg/kg dose were 57.46, 60.87 and 59.01 min, respectively. The major distribution tissues of Pd-Ia in rats were spleen, heart and lung, and low polarity enabled Pd-Ia to cross the blood-brain barrier. There was no long-term accumulation of Pd-Ia in rat tissues. Total recoveries of Pd-Ia within 24 h were low (0.097% in bile, 0.120% in urine and 0.009% in feces), which might be resulted from liver first pass effect.  相似文献   

14.
Germanium tetra(tertiary butoxide), [Ge(OtBu)4], has been prepared by the reaction of GeCl4 with KOBut in benzene. It is a monomeric crystalline solid having a distorted tetrahedral configuration, defined by the coordination of four OBut groups around germanium atom. The TG analysis showed that the compound is thermally stable and volatilizes at around 130 °C. Europium doped and un-doped germanium oxide nanoparticles were prepared based on the urea hydrolysis of Ge(OtBu)4/Eu(OOCCH3)3 in ethylene glycol medium at 150 °C followed by heating the resulting product at 750 °C. The nanoparticles were characterized by XRD, TEM and PL measurements. The europium doped nanoparticles, which were nearly monodispersed (∼30 nm), showed luminescence and the Eu3+ ions were occupying the surface of the GeO2 nanoparticles.  相似文献   

15.
Two newly isolated halotolerant obligately methylotrophic bacteria (strains C2T and SK12T) with the serine pathway of C1 assimilation are described. The isolates are strictly aerobic, Gram negative, asporogenous, non-motile rods, forming rosettes, multiplying by binary fission. Mesophilic and neutrophilic, accumulate intracellularly compatible solute ectoine and poly-β-hydroxybutyrate. The novel strains are able to grow at 0 up to 16% NaCl (w/v), optimally at 3–5% NaCl. The major cellular fatty acids are C18:1ω7c and C19:0cyc and the prevailing quinone is Q-10. The predominant phospholipids are phosphatidylcholine, phosphatidylglycerol, phosphatidyldimethylethanolamine and phosphatidylethanolamine. Assimilate NH4+ by glutamate dehydrogenase and via the glutamate cycle (glutamine synthetase and glutamate synthase). The DNA G + C contents of strains C2T and SK12T are 60.9 and 60.5 mol% (Tm), respectively. 16S rRNA gene sequence similarity between the two new isolates are 99% but below 94% with other members of the Alphaproteobacteria thus indicating that they can be assigned to a novel genus Methyloligella. Rather low level of DNA–DNA relatedness (53%) between the strains C2T and SK12T indicates that they represent two separate species of the new genus, for which the names Methyloligella halotolerans gen. nov., sp. nov. and Methyloligella solikamskensis sp. nov. are proposed. The type strain of Methyloligella halotolerans is C2T (=VKM B-2706T = CCUG 61687T = DSM 25045T) and the type strain of Methyloligella solikamskensis is SK12T (=VKM B-2707T = CCUG 61697T = DSM 25212T).  相似文献   

16.
The human proton-coupled folate transporter (HsPCFT, SLC46A1) mediates intestinal absorption of folates and transport of folates into the liver, brain and other tissues. On Western blot, HsPCFT migrates as a broad band (~ 55 kDa), higher than predicted (~ 50 kDa) in cell lines. Western blot analysis required that membrane preparations not be incubated in the loading buffer above 50 °C to avoid aggregation of the protein. Treatment of membrane fractions from HsPCFT-transfected HeLa cells with peptidyl N-glycanase F, or cells with tunicamycin, resulted in conversion to a ~ 35 kDa species. Substitution of asparagine residues of two canonical glycosylation sites to glutamine, individually, yielded a ~ 47 kDa protein; substitution of both sites gave a smaller (~ 35 kDa) protein. Single mutants retained full transport activity; the double mutant retained a majority of activity. Transport function and molecular size were unchanged when the double mutant was hemagglutinin (HA) tagged at either the NH2 or COOH terminus and probed with an anti-HA antibody excluding degradation of the deglycosylated protein. Wild-type or deglycosylated HsPCFT HA, tagged at amino or carboxyl termini, could only be visualized on the plasma membrane when HeLa cells were first permeabilized, consistent with the intracellular location of these domains.  相似文献   

17.
18.
Alkyl hydroperoxide reductase E (AhpE), a novel subgroup of the peroxiredoxin family, comprises Mycobacterium tuberculosis AhpE (MtAhpE) and AhpE-like proteins present in many bacteria and archaea, for which functional characterization is scarce. We previously reported that MtAhpE reacted ~ 103 times faster with peroxynitrite than with hydrogen peroxide, but the molecular reasons for that remained unknown. Herein, we investigated the oxidizing substrate specificity and the oxidative inactivation of the enzyme. In most cases, both peroxidatic thiol oxidation and sulfenic acid overoxidation followed a trend in which those peroxides with the lower leaving-group pKa reacted faster than others. These data are in agreement with the accepted mechanisms of thiol oxidation and support that overoxidation occurs through sulfenate anion reaction with the protonated peroxide. However, MtAhpE oxidation and overoxidation by fatty acid-derived hydroperoxides (~ 108 and 105 M− 1 s− 1, respectively, at pH 7.4 and 25 °C) were much faster than expected according to the Brønsted relationship with leaving-group pKa. A stoichiometric reduction of the arachidonic acid hydroperoxide 15-HpETE to its corresponding alcohol was confirmed. Interactions of fatty acid hydroperoxides with a hydrophobic groove present on the reduced MtAhpE surface could be the basis of their surprisingly fast reactivity.  相似文献   

19.
It was recently shown that the structure of the fluorophore attached to the acyl chain of phosphatidylcholine analogs determines their mechanism of transport across the plasma membrane of yeast cells (Elvington et al., J. Biol Chem. 280:40957, 2005). In order to gain further insight into the physical properties of these fluorescent phosphatidylcholine (PC) analogs, the rate and mechanism of their intervesicular transport was determined. The rate of spontaneous exchange was measured for PC analogs containing either NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl), Bodipy FL (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene), Bodipy 530 (4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene), or Bodipy 581 (4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene) attached to a five or six carbon acyl chain in the sn-2 position. The rate of transfer between phospholipid vesicles was measured by monitoring the increase in fluorescence as the analogs transferred from donor vesicles containing self-quenching concentrations to unlabeled acceptor vesicles. Kinetic analysis indicated that the transfer of each analog occurred by diffusion through the water phase as opposed to transfer during vesicle collisions. The vesicle-to-monomer dissociation rate constants differed by over four orders of magnitude: NBD-PC (kdis = 0.115 s− 1; t1/2 = 6.03 s); Bodipy FL-PC (kdis = 5.2 × 10− 4; t1/2 = 22.2 min); Bodipy 530-PC (kdis = 1.52 × 10− 5; t1/2 = 12.6 h); and Bodipy 581-PC (kdis = 5.9 × 10− 6; t1/2 = 32.6 h). The large differences in spontaneous rates of transfer through the water measured for these four fluorescent PC analogs reflect their hydrophobicity and may account for their recognition by different mechanisms of transport across the plasma membrane of yeast.  相似文献   

20.
Sinojackia xylocarpa is a Chinese endemic species that is extinct in the wild but extant in botanical gardens. Microsatellites were used to investigate the genetic diversity and mating system of this species for future use in a reintroduction program. Ex situ conserved populations of S. xylocarpa maintain intermediate levels of genetic diversity (HE = 0.570–0.640). However, a general and significant heterozygote excess was found, with a mean FIS of −0.103. S. xylocarpa was determined to be predominantly outcrossing (tm = 0.992; ts = 1.092). Population size and genetic diversity were found to be positively correlated (r = 0.991; P = 0.084). Principal coordinate analysis (PCA) suggests that all extant individuals are derived from two source populations. Reintroduction strategies of S. xylocarpa were proposed on the basis of these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号