首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanobacterial blooms, forming massive scum and various cyanotoxins, increasingly spread in a wide range of freshwater ecosystems. One heavy Microcystis bloom occurred in the entire Qinhuai River basin in 2010 summer for the first time. To determine the Microcystis populations and their spatial distributions along Qinhuai River, a molecular approach was applied by sequencing the DNA library based on the internal transcribed spacer sequences of 16-23S rRNA (ITS). The parsimony network (TCS) analysis showed that 9 groups were formed based on the main 24 genotypes, and each group was dominated by one highly represented root sequence. Marked changes in the composition and proportion of the Microcystis ITS genotype were detected from the upper to the lower reaches. The seed sources forming the bloom were probably located at 4 different locations. Furthermore, it was found that pH was the primary factor affecting the spatial distribution of the main genotype group among samples.  相似文献   

2.
为了解广东省水库微囊藻的产毒特征和ITS 序列的遗传多样性,从广东省供水水库中分离得到28 株微囊藻(Microcystisspp.),对它们的产毒特征和15 株微囊藻的ITS 序列进行了分析.高效液相色谱(HPLC)和微囊藻毒素合成酶基因mcyE 的检测结果表明,广东省水库中的微囊藻以产毒藻株占优势,微囊藻毒素的主要类型为MC-RR.广东省15 株藻株的ITS 序列相似性大于93.2%,在用相邻法(NJ)构建的系统树上,不同形态的种和不同地理区域的藻株没有区分开,产毒和非产毒藻株没有形成独立分支.这说明微囊藻ITS 序列的遗传多样性较低,ITS 序列和mcyE 存在没有相关性,表型不能够反映藻株的进化关系.因此,有必要将藻类传统分类方法与分子方法结合起来对蓝藻进行重新分类.  相似文献   

3.
Microcystins (MC), the most prevalent group of harmful cyanobacterial hepatotoxins, are primarily produced by strains of cyanobacteria in Microcystis, Anabaena and Planktothrix. Lake Taihu, which is the third largest freshwater lake in China, is a hypertrophic shallow lake in eastern China that has experienced lake-wide cyanobacterial blooms annually during the last few decades. In this study, PCR-DGGE was used to evaluate the diversity of potential MC-producing cyanobacteria and real-time PCR was used to analyze the dynamics of this population based on the presence of the mcy gene in samples collected during a year long study. The results revealed that all MC-producing genotypes detected belonged to the genus Microcystis. In addition, the MC-producing genotype communities were more diverse during the bloom season than the non-bloom season, and the diversity in the late bloom period was lower than the diversity in the early bloom period. Furthermore, the abundance of MC-producing genotypes increased dramatically during the bloom development period, reaching its peak in late summer (September). The results also suggested that the highest mcy gene concentration lagged behind the highest MC concentration, and the potential MC-producing cyanobacterial community shift lagged behind the development of blooms.  相似文献   

4.
Despite its importance for bloom toxicity, the factors determining the population structure of cyanobacterial blooms are poorly understood. Here, we report the results of a two‐year field survey of the population dynamics of Microcystis blooms in a small hypertrophic urban pond. Microscopic enumeration of Microcystis and its predators and parasites was combined with pigment and microcystin analysis and denaturing gradient gel electrophoresis of the ITS rDNA region to assess population dynamics and structure. Two main Microcystis morpho‐ and ITS types were revealed, corresponding to M. aeruginosa and M. viridis. In both years, high population densities of naked amoebae grazing on Microcystis coincided with rapid decreases in Microcystis biomass. In one year, there was a shift from heavily infested M. aeruginosa to the less‐infested M. viridis, allowing the bloom to rapidly recover. The preference of amoebae for M. aeruginosa was confirmed by grazing experiments, in which several amoeba strains were capable of grazing down a strain of M. aeruginosa, but not of M. viridis. Zooplankton and chytrid parasites appeared to be of minor importance for these strong and fast reductions in Microcystis biomass. These findings demonstrate a strong impact of small protozoan grazers on the biomass and genetic structure of Microcystis blooms.  相似文献   

5.
Oneida Lake is a shallow, eutrophic lake with a well-established cyanobacterial population with reported toxic blooms containing hepatotoxic microcystins (MC). Peak bloom events from the summers of 2002 and 2003 were analyzed to determine the principal cyanobacterial genera containing microcystin synthetase (mcy) genes. Sequence analysis of a partial mcyA amplicon targeting Microcystis, Anabaena and Planktothrix sp. indicated that Microcystis sp. was the dominant mcy genotype. This Microcystis clade was split into two distinct sub-clades. Bloom events contained members of both sub-clades with the higher MC concentrations found when both sub-clades were present in near equal proportions. The proportion of Microcystis containing the mcyD gene ranged from 0 to 37% of the total Microcystis population as determined by quantitative PCR (qPCR). The total concentration of Microcystis containing mcyD genes was linearly related to the concentration of MCs (r2 = 0.63). The relationship between mcy genotype and physiochemical variables was examined to determine the factor(s) controlling the periodicity in MC production in Oneida Lake. Multivariate statistical analyses, used to correlate the continuous-response variables, revealed a strong relationship between chlorophyll a, MCs and total Microcystis.  相似文献   

6.
The cyanobacterium Microcystis is notorious for forming extensive and potentially toxic blooms in nutrient-rich freshwater bodies worldwide. However, little is known about the factors underlying the genetic diversity and structure of natural Microcystis populations, despite the fact that this knowledge is essential to understand the build-up of blooms. Microcystis blooms are common and occur year-round in Africa, but are underinvestigated in this continent. We studied the genetic diversity and structure of Microcystis populations in 30 man-made reservoirs in Tigray (Northern Ethiopia) using Denaturing Gradient Gel Electrophoresis of the 16S–23S rDNA internal transcribed spacer (ITS) region and assessed the importance of local environmental conditions and geographic position of the reservoirs for the observed patterns. The analyses showed that both regional and local Microcystis ITS diversity in these recently constructed reservoirs was relatively low, with several dense blooms containing only a single ITS type. Especially one non-toxic ITS type dominated a considerable fraction of Microcystis blooms, but appeared restricted in its geographic distribution. The relationship between Microcystis ITS population structure and abiotic variables (water clarity, pH) and with zooplankton (Daphnia biomass) indicates a (limited) influence of environmental conditions on Microcystis population structure in the reservoirs of Tigray.  相似文献   

7.
A bloom of the cyanobacteria Microcystis aeruginosa was sampled over the summer and fall in order to determine if the spatial and temporal patterns in cell density, chlorophyll a (chl a) concentration, total microcystins concentration, and percent microcystins composition varied with environmental conditions in San Francisco Estuary. It was hypothesized that the seasonal variation in Microcystis cell density and microcystin concentration was ecologically important because it could influence the transfer of toxic microcystins into the aquatic food web. Sampling for Microcystis cell density, chl a concentration, total microcystins concentration and a suite of environmental conditions was conducted biweekly at nine stations throughout the freshwater tidal and brackish water regions of the estuary between July and November 2004. Total microcystins in zooplankton and clam tissue was also sampled in August and October. Microcystis cell density, chl a concentration and total microcystins concentration varied by an order of magnitude and peaked during August and September when and αB were high. Low streamflow and high water temperature were strongly correlated with the seasonal variation of Microcystis cell density, total microcystins concentration (cell)−1 and total microcystins concentration (chl a)−1 in canonical correlation analyses. Nutrient concentrations and ratios were of secondary importance in the analysis and may be of lesser importance to seasonal variation of the bloom in this nutrient rich estuary. The seasonal variation of Microcystis density and biomass was potentially important for the structure and function of the estuarine aquatic food web, because total microcystins concentration was high at the base of the food web in mesozooplankton, amphipod, clam, and worm tissue during the peak of the bloom. Handling editor: D. Hamilton  相似文献   

8.
Members of the cyanobacterial genus Microcystis commonly form blooms in eutrophic freshwater systems, and some produce cyclic heptapeptide hepatotoxins called microcystins, thereby often causing serious water management problems. Microcystis species were unified into the single Microcystis aeruginosa classification based on 16S rRNA gene sequences and DNA–DNA re-association experiments; however, the morphological features of the organisms differ in different culturing conditions. Here, we describe a new real-time quantitative PCR (qPCR) method of determining Microcystis intradiversity using the SYBR Green I assay. We analyzed 71 Microcystis 16S-23S rDNA internal transcribed spacer region (16S-23S ITS) sequences, designed three group-specific PCR primers that successfully selected a morphologically M. wesenbergii-like non-toxic group (Group-3), and differentiated between M. viridis-like toxic group (Group-4) and M. aeruginosa-like Group-1 organisms including toxic and non-toxic Microcystis strains. The primers covered 76% of the Microcystis 16S-23S ITS regions from all over the world (six continents) included in GenBank. We constructed a mixed culture with representative Microcystis strains from each group, and estimated their cell densities by qPCR over 7 weeks. Group-1 and Group-3 grew exponentially for 4 weeks; however, the growth of Group-4 declined after 2 weeks, revealing different growth properties for the Microcystis groups in the mixed culture. Finally, we applied this method to natural Microcystis blooms at four freshwater sites, and found the dominance of Group-1 in three blooms and of Group-3 in one bloom, thereby showing the geographically uneven distribution of Microcystis genotypes. The developed qPCR technique targeting the 16S-23S ITS region is both rapid and simple and is useful for selective quantification of group variations among sympatric Microcystis genotypes, such as in mixed cultures and the natural environment.  相似文献   

9.
The zooplankton community in the highly eutrophic Lake Kasumigaura was investigated and its relation to a bloom of Microcystis was analyzed. The zooplankton community was dominated by small cladocerans, whose biomass and production became highest in summer, when Microcystis bloomed. The high cladoceran production is considered to depend on the production of colonial Microcystis, because the production of nannoplankton was apparently too low to ensure the cladoceran production. Microcystis cells were unsuitable as food for the cladocerans inhabiting Lake Kasumigaura, but became utilizable when decomposed. Decomposed Microcystis may be the main food for Cladocera in the lake in summer. High water temperatures occurring in summer probably promoted decomposition of the Microcystis, leading to increased production of the small cladocerans.  相似文献   

10.
Surface samples of the 2007 Microcystis bloom occurring in Copco Reservoir on the Klamath River in Northern California were analyzed genetically by sequencing clone libraries made with amplicons at three loci: the internal transcribed spacer of the rRNA operon (ITS), cpcBA, and mcyA. Samples were taken between June and October, during which time two cell count peaks occurred, in mid-July and early September. The ITS and cpcBA loci could be classified into four or five allele groups, which provided a convenient means for describing the Microcystis population and its changes over time. Each group was numerically dominated by a single, highly represented sequence. Other members of each group varied by changes at 1 to 3 nucleotide positions, while groups were separated by up to 30 nucleotide differences. As deduced by a partial sampling of the clone libraries, there were marked population turnovers during the season, indicated by changes in allele composition at both the ITS and cpcBA loci. Different ITS and cpcBA genotypes appeared to be dominant at the two population peaks. Toxicity (amount of microcystin per cell) and toxigenic potential (mcyB copy number) were lower during the second peak, and the mcyB copy number fell further as the bloom declined.Toxic freshwater cyanobacterial blooms, commonly caused by Microcystis, are of current concern in many parts of the world because of their effects on drinking water, water-based recreation, and watershed ecology (5, 7). Microcystis cells are able to produce microcystin, a nonribosomally synthesized cyclic heptapeptide hepatotoxin with potent inhibitory activity against mammalian protein phosphatases (27) whose synthesis is directed by the 55-kb mcy gene cluster (25). The Microcystis genus exhibits worldwide occurrence, although the extent of genetic differentiation between or within geographical regions is currently uncertain due to a relatively sparse database, in spite of a growing number of studies (1, 2, 9, 11, 26, 28, 29).Only a few studies to date have used gene-specific tools to investigate the changes in the Microcystis population structure throughout the development of a bloom season. In some instances, there has been little indication of major population changes. Thus, the proportion of toxigenic (mcyB+) Microcystis was stable over the course of two consecutive bloom seasons in Lake Wannsee (Berlin, Germany) (17). The internal transcribed spacer of the rRNA operon (ITS) genotype, as assessed by denaturing gradient gel electrophoresis (DGGE) and sequencing, was also stable in Lake Volkerak (Netherlands) during 2001 (15). In contrast, studies of other lakes have observed changes in the Microcystis genotypes and in the proportion of potentially toxigenic cells during a bloom season (3, 15, 21, 31, 32). A better understanding of the population changes that occur during the development of toxic blooms is important in understanding their ecology and in assessing whether it might be feasible to manage Microcystis blooms in order to minimize toxicity.Copco Reservoir is a lake formed by a hydroelectric dam on the Klamath River in northern California. Beginning in 2004, highly toxic blooms dominated by Microcystis have developed between June and November (10, 13). Most studies of Microcystis blooms have been conducted in lakes with low in- and outflows. Copco Reservoir sits on a major river with normal through-flows of 1,000 to 3,000 cubic feet per second (cfs) during bloom season, although much of this flow occurs below the epilimnion, resulting in a surface water residence time of 20 to 25 days during summer (13). The consequences of toxic blooms in the reservoir may be carried to downstream reaches of the river, since elevated Microcystis levels have been present downstream of Copco Reservoir (14). We report here the results of a survey of the genotypic structure of the Microcystis population in Copco Reservoir during the 2007 bloom season. Major population shifts evident at the ITS and cpcBA loci coincided with the replacement of toxigenic with nontoxigenic strains.  相似文献   

11.
The water bloom‐forming cyanobacterium Aphanizomenon flos‐aquae Ralfs ex Bornet et Flahault (Nos‐tocales, Cyanophyceae) appeared in Lake Biwa and Lake Yogo in 1999 for the first time. The morphological characteristics were described using natural samples. In contrast to the other water bloom‐forming cyanobacteria such as Microcystis and Anabaena in Lake Biwa and Lake Yogo, the small summer population of A. flos‐aquae is apt to grow in winter, suggesting the low temperature preference or tolerance of this species. In order to clarify the effect of temperature on the growth, culture experiments were conducted using an axenic strain isolated from Lake Biwa. The strain could grow at above 8°C with an optimum temperature ranging from 23 to 29°C, and survived even at 5°C for at least 25days under low light conditions. Although these results confirmed the ability of the bloom formation during late autumn and winter, it is still unclear why the Aphanizomenon bloom occurred at temperatures of ca 10°C in December and not immediately after the disappearance of Microcystis and/or Anabaena bloom during autumn.  相似文献   

12.
The longitudinal distribution and seasonal fluctuation of phytoplankton communities was studied along the middle to lower part of a regulated river system (Nakdong River, Korea). Phytoplankton biomass decreased sharply in the middle part of the river (182 km upward the estuary dam), and then increased downstream reaching a maximum at the last sampling station (27 km upward the estuary dam). In contrast, there was little downstream fluctuation in species composition, irrespective of pronounced differences in nutrient concentrations (TN, TP, NO3, NH4, PO4) as well as in algal biomass. In the main river channel, small centric diatoms (Stephanodiscus hantzschii, Cyclotella meneghiniana) and pennate diatoms (Synedra, Fragilaria, Nitzschia) were dominant from winter to early spring (November–April). A mixed community of cryptomonads, centric and pennate diatoms, and coenobial greens (Pediastrum, Scenedesmus) was dominant in late spring (May–June). Blue-green algae (Anabaena, Microcystis, Oscillatoria) were dominant in the summer (July–September). A mid-summer Microcystis bloom occurred at all study sites during the dry season, when discharge was low, though the nutrient concentration varied in each study site. Nutrients appeared everywhere to be in excess of algal requirement and apparently did not influence markedly the downstream and seasonal phytoplankton compositional differences in this river.  相似文献   

13.
Agrawal  Manish K.  Bagchi  Divya  Bagchi  Suvendra N. 《Hydrobiologia》2001,464(1-3):37-44
Cyanobacterial blooms consisting of Microcystis spp., collected from 14 water-bodies in Central India, and an adapted culture, were studied for likely impact on zooplankton community. When fed with single cells of Microcystis from several locations, in mixtures with Chlorella, population growth of the cladoceran Moina macrocopa was suppressed. Microcystis alone was unsuitable as food. In three cases, bloom extracts enhanced mortality of starved zooplankton. Extracts from several sources inhibited protease activity when trypsin or a crude extract from zooplankton served as enzyme source. Upon fractionation by solid-phase extraction, the C-18 passed extract contained the anti-protease and toxic substances for zooplankton, whereas a methanol eluted fraction retained the trypsin inhibitory substance. The study suggests that production of protease inhibitors by cyanobacteria is a factor responsible for feeding inhibition and mortality in zooplankton, which in turn could regulate the community structure of grazers.  相似文献   

14.
The biological, physical and chemical properties of Lake Elphinstone were studied during a dense, toxic cyanoprokaryote bloom dominated by Microcystis. Decreases in total abundance and richness in macroinvertebrate communities coincided with increases in Microcystis toxicity. Water quality was characterized by high light attenuation values caused by abiogenic turbidity and shading and absorbance from thick algal scums. The study highlights the potential for multidimensional environmental impacts associated with toxic cyanoprokaryote blooms, and the consequent implications for the management of shallow, inland and tropical lakes that are susceptible to toxic blooms.  相似文献   

15.
《Harmful algae》2011,10(6):607-612
Microcystis wesenbergii (Komárek) Komárek in Kondrateva, a major bloom forming cyanobacterial species, possesses unique colonial characteristics which can be easily distinguished from other Microcystis species. However, there is still no genetic marker to effectively characterize M. wesenbergii. In this research, thirteen strains of M. wesenbergii, collected from eight locations in Chinese water bodies were examined for molecular characterization of both cpcBA-IGS sequences (phycocyanin intergenic spacer and flanking regions) and ITS sequences (internal transcribed spacer region between 16S and 23S rDNA). The phylogenetic analysis based on cpcBA-IGS sequences showed that the M. wesenbergii strains formed a distinct cluster with high support values, indicating the cpcBA-IGS region could be used to characterize and distinguish M. wesenbergii from other species of Microcystis. These developed primers were verified to be effective in distinguishing M. wesenbergii from other species of Microcystis and from other species in different genera of cyanobacteria.  相似文献   

16.
Nutrient limitations were investigated in Copco and Iron Gate Reservoirs, on the Klamath River in California, where blooms of the toxin-producing cyanobacterium Microcystis aeruginosa were first reported in 2005. Nutrient enrichment experiments conducted in situ in June and August, 2007 and 2008, determined responses in phytoplankton biomass, Microcystis abundance and microcystin concentration to additions of phosphorus and different forms of nitrogen (NH4+, NO3, and urea). Microcystis abundance was determined using quantitative PCR targeting the phycocyanin intergenic spacer cpcBA.Total phytoplankton biomass increased with additions of N both before and during Microcystis blooms, with no primary effects from P, suggesting overall N limitation for phytoplankton growth during the summer season. NH4+ generally produced the greatest response in phytoplankton growth, while Microcystis abundance increased in response to all forms of N. Microcystis doubling time in the in situ experiments was 1.24–1.39 days when N was not limiting growth. The results from this study suggest availability of N during the summer is a key growth-limiting factor for the initiation and maintenance of toxic Microcystis blooms in Copco and Iron Gate Reservoirs in the Klamath River.  相似文献   

17.
Summary Microcystis, which are toxic microcystin-producing cyanobacteria, normally bloom in summer and drop in numbers during the winter season in Senba Lake, Japan. Recently, this lake has been treated by ultrasonic radiation and jet circulation which were integrated with flushing with river water. This treatment was most likely sufficient for the destruction of cyanobacterial gas vacuoles. In order to confirm whether Microcystis viridis was still present, a molecular genetic monitoring technique on the basis of DNA direct extraction from the sediment was applied. Three primer sets were used for polymerase chain reaction (PCR) based on rRNA intergenic spacer analysis (RISA), the DNA dependent RNA polymerase (rpoC1) and a Microcystis sp.-specific rpoC1 fragment. The results from each primer were demonstrated on the basis of single strand conformation polymorphisms (SSCP). Using the RISA primer showed different results from the rpoC1 and Microcystis sp.-specific rpoC1 fragment; meanwhile, the rpoC1 Microcystis sp.-specific fragment was more specific than the RISA primer. Therefore, the Microcystis sp.-specific rpoC1 fragment was further analysed by denaturing gradient gel electrophoresis (DGGE). The DNA pattern representing M. viridis could not be detected in any of the sediment samples. However, the results were confirmed with another technique, terminal restriction fragment length polymorphisms (T-RFLP). Although T-RFLP patterns of 16S rDNA in sediment at 91 bp and 477 bp lengths were matched with the T-RFLP of M. viridis (HhaI and MspI endonuclease digestion, respectively), the T-RFLP pattern of 75 bp length was not matched with M. viridis (both of HhaI and MspI endonuclease digestion) which were the major T-RFLP pattern of M. viridis. Therefore, the results most likely indicated that M. viridis seems to have disappeared because of the addition of the ultrasonic radiation and jet circulation to the flushing treatment.  相似文献   

18.
The dynamics of planktonic cyanobacteria in eutrophicated freshwaters play an important role in formation of annual summer blooms, yet overwintering mechanisms of these water bloom forming cyanobacteria remain unknown. The responses to darkness and low temperature of three strains (unicellular Microcystis aeruginosa FACHB-905, colonial M. aeruginosa FACHB-938, and a green alga Scenedesmus quadricauda FACHB-45) were investigated in the present study. After a 30-day incubation under darkness and low temperature, cell morphology, cell numbers, chlorophyll a, photosynthetic activity (ETRmax and I k), and malodialdehyde (MDA) content exhibited significant changes in Scenedesmus. In contrast, Microcystis aeruginosa cells did not change markedly in morphology, chlorophyll a, photosynthetic activity, and MDA content. The stress caused by low temperature and darkness resulted in an increase of the antioxidative enzyme-catalase (CAT) in all three strains. When the three strains re-grew under routine cultivated condition subjected to darkness and low temperature, specific growth rate of Scenedesmus was lower than that of Microcystis. Flow cytometry (FCM) examination indicated that two distinct types of metabolic response to darkness and low temperature existed in the three strains. The results from the present study reveal that the cyanobacterium Microcystis, especially colonial Microcystis, has greater endurance and adaptation ability to the stress of darkness and low temperature than the green alga Scenedesmus. Handling editor: D. Hamilton  相似文献   

19.
Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters   总被引:5,自引:5,他引:0  
A survey of the occurrence of toxic blooms of cyanobacteria in Finnish fresh and coastal waters was made during 1985 and 1986. Toxicity of the freeze-dried water bloom samples was tested by mouse-bioassay (i.p.). Forty-four per cent (83/188) of the bloom samples were found to be lethally toxic. Hepatotoxic blooms (54) were almost twice as common as neurotoxic ones (29). Anabaena was the most frequently found genus in toxic and non-toxic blooms and it was present in all neurotoxic samples. Statistical associations were found between hepatotoxicity and incidence of Microcystis aeruginosa, M. viridis, M. wesenbergii, Anabaena flos-aquae and Anabaena spiroides. Neurotoxicity was statistically associated with Anabaena lemmermannii, Anabaena flos-aquae and Gomphosphaeria naegeliana. Isolation of strains of cyanobacteria confirmed the occurrence of hepatotoxic and neurotoxic strains of Anabaena, as well as hepatotoxic strains of Microcystis and Oscillatoria species.Toxic blooms caused cattle poisonings at three different lakes during the study period. Toxic blooms also occurred in drinking water sources. Our study shows that toxic cyanobacteria are more common in Finnish lakes than would be expected on the basis of animal poisonings. The results of this study show the existence of toxic cyanobacteria in Finnish water supplies and the need for their continued study as agents of water based disease.  相似文献   

20.
Macroalgal bloom‐forming species occur in coastal systems worldwide. However, due to overlapping morphologies in some taxa, accurate taxonomic assessment and classification of these species can be quite challenging. We investigated the molecular and morphological characteristics of 153 specimens of bloom‐forming Ulva located in and around Narragansett Bay, RI, USA. We analyzed sequences of the nuclear internal transcribed spacer 1 region (ITS1) and the chloroplast‐encoded rbcL; based on the ITS1 data, we grouped the specimens into nine operational taxonomic units (OTUs). Eight of these OTUs have been previously reported to exist, while one is novel. Of the eight OTUs, all shared sequence identity with previously published sequences or differed by less than 1.5% sequence divergence for two molecular markers. Previously, 10 species names were reported for Ulva in Rhode Island (one blade and nine tube‐forming species) based upon morphological classification alone. Of our nine OTUs, three contained blade‐forming specimens (U. lactuca, U. compressa, U. rigida), one OTU had a blade with a tubular stipe, and six contained unbranched and/or branched tubular morphologies (one of these six, U. compressa, had both a blade and a tube morphology). While the three blade‐forming OTUs in Narragansett Bay can frequently be distinguished by careful observations of morphological characteristics, and spatial/temporal distribution, it is much more difficult to distinguish among the tube‐forming specimens based upon morphology or distribution alone. Our data support the molecular species concept for Ulva, and indicate that molecular‐based classifications of Ulva species are critical for proper species identification, and subsequent ecological assessment or mitigation of Ulva blooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号