首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Ma L  Wang T  Liu Q  Zhang X  Ma W  Zhang Q 《Biotechnology advances》2012,30(4):859-873
Biomass, a renewable, sustainable and carbon dioxide neutral resource, has received widespread attention in the energy market as an alternative to fossil fuels. Thermal-chemical conversion of biomass to produce biofuels is a promising technology with many commercial applications. This paper reviewed the state-of-the-art research and development of thermal-chemical conversion of biomass in China with a special focus on gasification, pyrolysis, and catalytic transformation technologies. The advantages and disadvantages, potential of future applications, and challenges related to these technologies are discussed. Conclusively, these transformation technologies for the second-generation biofuels with using non-edible lignocellulosic biomass as feedstocks show prosperous perspective for commercial applications in near future.  相似文献   

2.
In-situ catalytic upgrading of biomass fast pyrolysis vapors was performed in a fixed bed bench-scale reactor at 500 °C, for catalyst screening purposes. The catalytic materials tested include a commercial equilibrium FCC catalyst (E-cat), various commercial ZSM-5 formulations, magnesium oxide and alumina materials with varying specific surface areas, nickel monoxide, zirconia/titania, tetragonal zirconia, titania and silica alumina. The bio-oil was characterized measuring its water content, the carbon-hydrogen-oxygen (by difference) content and the chemical composition of its organic fraction. Each catalytic material displayed different catalytic effects. High surface area alumina catalysts displayed the highest selectivity towards hydrocarbons, yielding however low organic liquid products. Zirconia/titania exhibited good selectivity towards desired compounds, yielding higher organic liquid product than the alumina catalysts. The ZSM-5 formulation with the highest surface area displayed the most balanced performance having a moderate selectivity towards hydrocarbons, reducing undesirable compounds and producing organic liquid products at acceptable yields.  相似文献   

3.
Preparation of high adsorption capacity bio-chars from waste biomass   总被引:3,自引:0,他引:3  
Bio-chars with high adsorption capacity derived from rice-husks and corncobs were prepared at different retention times (RTs) in a pyrolysis reactor. At a fixed pyrolysis temperature, the pyrolysis RT is a key factor influencing the surface areas and functional group contents of the bio-chars, and further influencing their adsorption capacities. The results indicate that the bio-char prepared at RT of 1.6 s exhibits a higher phenol adsorption capacity (589 mg g−1) than other bio-chars and many activated carbons reported in the literature. An adsorption mechanism based on acid-base interaction and hydrogen binding between phenol and the functional groups was proposed to elucidate the adsorption process. An economic evaluation of the use of bio-chars as adsorbents was made.  相似文献   

4.
Pyrolysis of biomass is a means to industrially manufacture renewable oil and gas, in addition to biochar for soil amendment and long-term carbon fixation. In this work, oil and char derived from the slow pyrolysis of the unicellular marine diatom Tetraselmis chui are analysed using a variety of techniques. The pyrolytic oil fraction exhibits a wide variety of fatty acids, alkanes, alkenes, amides, aldehydes, terpenes, pyrrolidinines, phytol and phenols, with a high heating value (HHV) of 28 MJ/kg. The biochar produced has a HHV of 14.5 MJ/kg and reveals a number of properties that are potentially valuable from an agronomic point of view, including high cation exchange capacity (CEC), large concentration of N, and a low C:N ratio. The quantity of C in T. chui biochar that can be expected to stabilise in soil amounts to approximately 9%/wt of the original feedstock, leading to a potential net reduction in atmospheric CO2.  相似文献   

5.
The pyrolysis of wheat and barley spent grains resulting from bio-ethanol and beer production respectively was investigated at temperatures between 460 and 540 °C using an activated alumina bed. The results showed that the bio-oil yield and quality depend principally on the applied temperature where pyrolysis at 460 °C leaves a bio-oil with lower nitrogen content in comparison with the original spent grains and low oxygen content. The viscosity profile of the spent grains indicated that activated alumina could promote liquefaction and prevent charring of the structure between 400 and 460 °C. The biochar contains about 10-12% of original carbon and 13-20% of starting nitrogen resulting very attractive as a soil amendment and for carbon sequestration. Overall, value can be added to the spent grains opening a new market in bio-fuel production without the needs of external energy. The bio-oil from spent grains could meet about 9% of the renewable obligation in the UK.  相似文献   

6.
Bu Q  Lei H  Ren S  Wang L  Holladay J  Zhang Q  Tang J  Ruan R 《Bioresource technology》2011,102(13):7004-7007
Catalytic microwave pyrolysis of biomass using activated carbon was investigated to determine the effects of pyrolytic conditions on the yields of phenol and phenolics. The high concentrations of phenol (38.9%) and phenolics (66.9%) were obtained at the temperature of 589 K, catalyst-to-biomass ratio of 3:1 and retention time of 8 min. The increase of phenol and its derivatives compared to pyrolysis without catalysts has a close relationship with the decomposition of lignin under the performance of activated carbon. The concentration of esters was also increased using activated carbon as a catalyst. The high content of phenols obtained in this study can be used either directly as fuel after upgrading or as feedstock of bio-based phenols for chemical industry.  相似文献   

7.
The poor and inconsistent physicochemical properties of bio-oil are inhibiting its industrialized production. We investigated the variability in properties of switchgrass bio-oil produced at three pyrolysis temperatures (T = 450, 500, and 550 °C) and three feedstock moisture contents (MC = 5%, 10%, and 15%) in a 3 × 3 factorial experiment in order to exploit opportunities to improve bio-oil properties through optimization of pyrolysis parameters. Results showed that even with the single type of feedstock and pyrolysis system, the two main factors and their interaction caused large variations in bio-oil yield and most of the measured physicochemical properties. Following improvements of bio-oil properties could be individually achieved by selecting an optimal pyrolysis condition (shown in parenthesis) comparing with the worst case: increase of bio-oil yield by more than twofold (MC = 10%, T = 450 °C), increase of pH by 20.4% from 2.74 to 3.3 (MC = 10%, T = 550 °C), increase of higher heating value by 18.1% from 16.6 to 19.6 MJ/kg (MC = 10%, T = 450 °C), decrease of density by 5.9% from 1.18 to 1.11 g/cm3 (MC = 5%, T = 550 °C), decrease of water content by 36% from 31.4 to 20.1 wt.% (MC = 5%, T = 450 °C), decrease of viscosity by 40% from 28.2 to 17 centistokes (MC = 5%, T = 550 °C), decrease of solid content by 57% from 2.86 to 1.23 wt.% (MC = 15%, T = 550 °C), and decrease of ash content by 41.9% from 0.62 to 0.36 wt.% (MC = 15%, T = 550 °C). There is no single, clear-cut optimal condition that can satisfy the criteria for a bio-oil product with all the desired properties. Trade-offs should be balanced according to the usage of the end-products.  相似文献   

8.
In this study, pyrolysis of grape bagasse was investigated with the aim to study the product distribution and their chemical compositions and to identify optimum process conditions for maximizing the bio-oil yield. Particular investigated process variables were temperature (350-600 °C), heating rate (10-50 °C/min) and nitrogen gas flow rate (50-200 cm3/min). The maximum oil yield of 27.60% was obtained at the final pyrolysis temperature of 550 °C, sweeping gas flow rate of 100 cm3/min and heating rate of 50 °C/min in a fixed-bed reactor. The elemental analysis and heating value of the bio-oils were determined, and then the chemical composition of the bio-oil was investigated using chromatographic and spectroscopic techniques such as column chromatography, 1H NMR and FTIR. The fuel properties of the bio-oil such as flash point, viscosity and density were also determined. The bio-oils obtained from grape bagasse were presented as an environmentally friendly feedstock candidate for bio-fuels.  相似文献   

9.
Wu  Qianqian  Sakata  Masayuki K.  Wu  Deyi  Yamanaka  Hiroki  Minamoto  Toshifumi 《Limnology》2021,22(3):363-370
Limnology - Recently, environmental DNA (eDNA) metabarcoding techniques have been applied to biodiversity investigations in aquatic ecosystems. However, no study has yet tested whether this...  相似文献   

10.
The aim of this work was to investigate the potential conversion of Chlamydomonas reinhardtii biomass harvested after hydrogen production. The spent algal biomass was converted into nitrogen-rich bio-char, biodiesel and pyrolysis oil (bio-oil). The yield of lipids (algal oil), obtained by solvent extraction, was 15 ± 2% w/wdry-biomass. This oil was converted into biodiesel with a 8.7 ± 1% w/wdry-biomass yield. The extraction residue was pyrolysed in a fixed bed reactor at 350 °C obtaining bio-char as the principal fraction (44 ± 1% w/wdry-biomass) and 28 ± 2% w/wdry-biomass of bio-oil. Pyrolysis fractions were characterized by elemental analysis, while the chemical composition of bio-oil was fully characterized by GC-MS, using various derivatization techniques. Energy outputs resulting from this approach were distributed in hydrogen (40%), biodiesel (12%) and pyrolysis fractions (48%), whereas bio-char was the largest fraction in terms of mass.  相似文献   

11.
Tar reduction in pyrolysis vapours from biomass over a hot char bed   总被引:3,自引:0,他引:3  
The behaviour of pyrolysis vapours over char was investigated in order to maximise tar conversion for the development of a new fixed bed gasifier. Wood samples were decomposed at a typical pyrolysis temperature (500 °C) and the pyrolysis vapours were then passed directly through a tar cracking zone in a tubular reactor. The product yields and properties of the condensable phases and non-condensable gases were studied for different bed lengths of char (0–450 mm), temperatures (500–800 °C), particle sizes (10 and 15 mm) and nitrogen purge rates (1.84–14.70 mm/s). The carbon in the condensable phases showed about 66% reduction by a 300 mm long char section at 800 °C, compared to that for pyrolysis at 500 °C. The amount of heavy condensable phase decreased with increasing temperature from about 18.4 wt% of the biomass input at 500 °C to 8.0 wt% at 800 °C, forming CO, H2 and other light molecules. The main mode of tar conversion was found to be in the vapour phase when compared to the results without the presence of char. The composition of the heavy condensable phase was simplified into much fewer secondary and tertiary tar components at 800 °C. Additional measures were required to maximise the heterogeneous effect of char for tar reduction.  相似文献   

12.
The kinetics of biomass pyrolysis was studied via a sequential method including two stages. Stage one is to analyze the kinetics of biomass pyrolysis and starts with the determination of unreacted fraction of sample at the maximum reaction rate, (1-α)(m). Stage two provides a way to simulate the reaction rate profile and to verify the appropriateness of kinetic parameters calculated in the previous stage. Filter paper, xylan, and alkali lignin were used as representatives of cellulose, hemicellulose, and lignin whose pyrolysis was analyzed with the assumption of the orders of reaction being 1, 2, and 3, respectively. For most of the biomass pyrolysis, kinetic parameters were properly determined and reaction rate profiles were adequately simulated by regarding the order of reaction as 1. This new method should be applicable to most of the biomass pyrolysis and similar reactions whose (1-α)(m) is acquirable, representative, and reliable.  相似文献   

13.
Safflower (Charthamus tinctorius L.) seed press cake was pyrolysed in a fixed-bed reactor. The effects of pyrolysis temperature, heating rate and sweep gas flow rates on the yields of the products were investigated. Pyrolysis runs were performed using pyrolysis temperatures between 400 and 600 °C with heating rates of 10, 30 and 50 °C min−1. The obtained bio-char, gas and bio-oil yields ranged between 25 and 34 wt%, 19 and 25 wt%, and 28 and 36 wt%, respectively, at different pyrolysis conditions. The highest liquid yield was obtained at 500 °C pyrolysis temperature with a heating rate of 50 °C min−1 under the sweep gas of N2 with a flow rate of 100 cm3 min−1. Employing the higher heating rate of 50 °C min−1 results in maximum bio-oil yield, probably due to the decrease in mass transfer limitations. According to the results obtained under the conditions of this study, the effects of pyrolysis temperature and sweep gas flow rate are more significant than the effect of heating rate on the yields.  相似文献   

14.
This study is focused on hydrocarbon production through changing carrier gas and using zeolite catalysts during pyrolysis. A large reduction in high molecular weight, oxygenated compounds was noticed when the carrier gas was changed from helium to hydrogen during pyrolysis. A catalytic pyrolysis was conducted using two different methods based on how the biomass and catalysts were contacted together. For both methods, there was no significant change in the carbon yield with the change in pyrolysis environment. However, the mixing-method produced higher aromatic hydrocarbons than the bed-method. In addition, two methods were also tested using two ratios of biomass to catalyst. Nonetheless, there was no significant increase in hydrocarbon yield as the catalyst loading was increased from two to five times of biomass in the catalyst-bed method. In contrast to this, a significant increase was noticed for the catalytic-mixing method when the biomass to catalyst loading was increased from 1:4 to 1:9.  相似文献   

15.
In this work the parameters of Low Temperature Conversion - LTC were applied in a centrifuged sludge from a sewage treatment plant located in Rio de Janeiro, Brazil. Before the conversion, the sludge was dried and analyzed by TGA to observe its behavior with increasing temperature. The chemical composition of the crude pyrolysis oil was analyzed by FTIR, 1H NMR and GC-MS. The results showed that the oil is a mixture of hydrocarbons, oxygenated and nitrogenated compounds. Using a catalytic treatment it was possible to fractionate the oil where the predominant constituents were hydrocarbons showing that the cracking was effective. An important result was the difference between the calorific value of dry sludge (10 MJ kg−1), the pyrolysis oil (36 MJ kg−1) and one of the fractions separated by catalytic cracking (40 MJ kg−1) when compared with commercial diesel (45 MJ kg−1).  相似文献   

16.
Settlement tiles were used to characterise and quantify coral reef associated algal communities along water quality and herbivory gradients from terrestrial influenced near shore sites to oceanic passage sites in Marovo Lagoon, the Solomon Islands. After 6 months, settlement tile communities from inshore reefs were dominated by high biomass algal turfs (filamentous algae and cyanobacteria) whereas tiles located on offshore reefs were characterised by a mixed low biomass community of calcareous crustose algae, fleshy crustose algae and bare tile. The exclusion of macrograzers, via caging of tiles, on the outer reef sites resulted in the development of an algal turf community similar to that observed on inshore reefs. Caging on the inshore reef tiles had a limited impact on community composition or biomass. Water quality and herbivorous fish biomass were quantified at each site to elucidate factors that might influence algal community structure across the lagoon. Herbivore biomass was the dominant driver of algal community structure. Algal biomass on the other hand was controlled by both herbivory and water quality (particularly dissolved nutrients). This study demonstrates that algal communities on settlement tiles are an indicator capable of integrating the impacts of water quality and herbivory over a small spatial scale (kilometres) and short temporal scale (months), where other environmental drivers (current, light, regional variability) are constant.  相似文献   

17.
Ethanol produced from lignocellulosic biomass is a renewable alternative to diminishing petroleum based liquid fuels. The release of many new sugarcane varieties by the United States Department of Agriculture to be used as energy crops is a promising feedstock alternative. Energy cane produces large amounts of biomass that can be easily transported, and production does not compete with food supply and prices because energy cane can be grown on marginal land instead of land for food crops. The purpose of this study was to evaluate energy cane for lignocellulosic ethanol production. Energy cane variety L 79-1002 was pretreated with weak sulfuric acid to remove lignin. In this study, 1.4 M sulfuric acid pretreated type II energy cane had a higher ethanol yield after fermentation by Klebsiella oxytoca without enzymatic saccharification than 0.8 M and 1.6 M sulfuric acid pretreated type II energy cane. Pretreated biomass was inoculated with K. oxytoca for cellulose fermentation and Pichia stipitis for hemicellulose fermentation under simultaneous saccahrification and fermentation (SSF) and separate hydrolysis and fermentation (SHF) conditions. For enzymatic saccharification of cellulose, the cellulase and ??-glucanase cocktail significantly increased ethanol production compared to the ethanol production of fermented acid pretreated energy cane without enzymatic saccharification. The results revealed that energy cane variety L 79-1002 produced maximum cellulosic ethanol under SHF (6995 mg/L) and produced 3624 mg/L ethanol from fermentation of hemicellulosic sugars.  相似文献   

18.
The proteins from cytoplasmic ribosomal subunits of eight species of algae were analyzed by two-dimensional gel electrophoresis. The molecular weights of the proteins were in the range of 10,000 to 55,000. We have compared the protein patterns from the ribosomal subunits of the different species to those of Chlamydomonas reinhardii. It was quite clear that there are many similarities in the protein patterns of all the investigated species. We found for Chlamydomonas eugametos 48, Chlamydomonas noctigama 42, Chlorogonium elongatum 47, Scenedesmus obliquus 40, Chlorella fusca 35, and Euglena gracilis 35 proteins which were homologous to those of Chlamydomonas reinhardii. For the colorless flagellate Polytoma papillatum, we detected 45 proteins homologous to Chlamydomonas reinhardii, so that the generally assumed close relationship between Chlamydomonas and Polytoma is confirmed.  相似文献   

19.
Biofuels from continuous fast pyrolysis of soybean oil: A pilot plant study   总被引:2,自引:0,他引:2  
The continuous fast pyrolysis of soybean oil in a pilot plant was investigated. The experimental runs were carried out according to an experimental design alternating the temperature (from 450 to 600 °C) and the concentration of water (from 0% to 10%). The liquid products were analyzed by gas chromatography and by true boiling point (TPB) distillation. A simple distillation was used to obtain purified products such as gasoline and diesel. Physical–chemical analysis showed that these biofuels are similar to fossil fuels. Mass and energy balances were carried out in order to determine the vaporization enthalpy and the reaction enthalpy for each experiment. The thermal analysis showed that it is possible to use the products as an energy source for the process.  相似文献   

20.
Fermentable sugar obtained from lignocellulosic material exhibits great potential as a renewable feedstock for the production of bio-ethanol. One potentially viable source of fermentable sugars is pyrolysis oil, commonly called bio-oil. Depending on the type of lignocellulosic material and the operating conditions used for pyrolysis, bio-oil can contain upwards of 10 wt% of 1,6-anhydro-β-d-glucopyranose (levoglucosan, LG), an anhydrosugar that can be hydrolyzed to glucose. This research investigated the extraction of levoglucosan from pyrolysis oil via phase separation, the acid-hydrolysis of the levoglucosan into glucose, and the subsequent fermentation of this hydrolysate into ethanol.Optimal selection of water-to-oil ratio, temperature and contact time yielded an aqueous phase containing a levoglucosan concentration of up to 87 g/L, a yield of 7.8 wt% of the bio-oil. Hydrolysis conditions of 125 °C, 44 min and 0.5 M H2SO4 resulted in a maximum glucose yield of 216% (when based on original levoglucosan), inferring other precursors of glucose were present in the aqueous phase. The aqueous phase contained solutes which inhibited fermentation, however, up to 20% hydrolysate solutions were efficiently fermented (yield = 0.46 g EtOH/g glucose; productivity = 0.55 g/L h) using high yeast inoculums (1 g/L in flask) and micro-aerophilic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号