首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bromodomain: an acetyl-lysine binding domain   总被引:15,自引:0,他引:15  
Zeng L  Zhou MM 《FEBS letters》2002,513(1):124-128
  相似文献   

2.
3.
4.
5.
An acetyl-histone peptide library was used to determine the thermodynamic parameters that define acetylation-dependent bromodomain-histone interactions. Bromodomains interact with histones by binding acetylated lysines. The bromodomain used in this study, BrD3, is derived from the polybromo-1 protein, which is a subunit of the PBAF chromatin remodeling complex. Steady-state fluorescence anisotropy was used to examine the variations in specificity and affinity that drive molecular recognition. Temperature and salt concentration dependence studies demonstrate that the hydrophobic effect is the primary driving force, consistent with lysine acetylation being required for binding. An electrostatic effect was observed in only two complexes where the acetyl-lysine was adjacent to an arginine. The large change in heat capacity determined for the specific complex suggests that the dehydrated BrD3-histone interface forms a tightly bound, high-affinity complex with the target site. These explorations into the thermodynamic driving forces that confer acetylation site-dependent BrD3-histone interactions improve our understanding of how individual bromodomains work in isolation. Furthermore, this work will permit the development of hypotheses regarding how the native Pb1, and the broader class of bromodomain proteins, directs multisubunit chromatin remodeling complexes to specific acetyl-nucleosome sites in vivo.  相似文献   

6.
7.
8.
A major challenge in chromatin biology is to understand the mechanisms by which chromatin is remodeled into active or inactive states as required during development and cell differentiation. One complex implicated in these processes is the nucleosome remodeling and histone deacetylase (NuRD) complex, which contains both histone deacetylase and nucleosome remodeling activities and has been implicated in the silencing of subsets of genes involved in various stages of cellular development. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a core component of the NuRD complex and contains a nucleosome remodeling ATPase domain along with two chromodomains and two plant homeodomain (PHD) fingers. We have previously demonstrated that the second PHD finger of CHD4 binds peptides corresponding to the N terminus of histone H3 methylated at Lys(9). Here, we determine the solution structure of PHD2 in complex with H3K9me3, revealing the molecular basis of histone recognition, including a cation-π recognition mechanism for methylated Lys(9). Additionally, we demonstrate that the first PHD finger also exhibits binding to the N terminus of H3, and we establish the histone-binding surface of this domain. This is the first instance where histone binding ability has been demonstrated for two separate PHD modules within the one protein. These findings suggest that CHD4 could bind to two H3 N-terminal tails on the same nucleosome or on two separate nucleosomes simultaneously, presenting exciting implications for the mechanism by which CHD4 and the NuRD complex could direct chromatin remodeling.  相似文献   

9.
10.
Computational analysis reveals six tandem bromodomains within the amino-terminal region of the human Polybromo-1 protein, a required subunit of the Polybromo, BRG1-associated factors chromatin remodeling complex. Bromodomains are acetyl-lysine binding modules found in many chromatin binding proteins and histone acetyltransferases. Recent in vivo studies suggest that bromodomains can both discriminate the presence of an acetyl group on a lysine side chain and locate the acetyl-lysine within a histone protein. Together, this implies that multiple bromodomains may be able to function cooperatively and recognize a specific acetylation pattern to localize remodeling complexes to specific chromatin sites. Here, the cloning, expression and bioactivity of recombinant bromodomains from the human Polybromo-1 protein is described. Individual bromodomains from Polybromo-1 were cloned from human cDNA into a pET30b expression vector enabling effective one-step purification by affinity chromatography. Due to complications, including the high number of rare codons found in the coding regions and the tendency of individually expressed domains to aggregate and misfold, bacterial expression was only achieved using a cell strain containing rare eukaryotic tRNAs. Fluorescence-based bioactivity assays were performed to determine if native binding features were retained. The present cloning, expression, and purification procedure enabled the preparation of large quantity and high yields of biologically active recombinant bromodomains from human Polybromo-1 for in vitro structure and function studies. This is the first report of recombinant active form of bromodomains obtained from PB1.  相似文献   

11.
12.
13.
王蕊  曾宪录 《遗传》2010,32(4):301-306
染色质高度紧密的折叠阻止了转录因子和辅因子与DNA的结合, 因而通过染色质重塑以解除这样的抑制环境, 对于转录活动的正常进行是至关重要的。目前认为, 染色质重塑至少是通过两种机制来完成的, 一种是通过ATP依赖的染色质改构复合物, 另一种是通过对组蛋白尾部进行共价修饰的组蛋白修饰酶复合物。文章结合近年来的研究进展, 对前者进行染色质重塑的机制及两者在基因转录调控过程中如何相互协作等进行了论述。  相似文献   

14.
15.
基因表达调控是生物体生长发育的一个重要环节.在这一过程中,染色质重塑复合物扮演了非常重要的作用.SAGA是一个至少由20个蛋白组成的不依赖ATP的多功能染色质重塑复合物,它通过对组蛋白H3和H2B氨基末端赖氨酸乙酰化修饰来松动染色质结构,从而促进基因转录的起始.目前,对SAGA及其同源物的研究表明,SAGA及其同源物参与了许多重要的生物学功能,如mRNA输出、DNA损伤修复、胚胎发育、细胞癌变等.  相似文献   

16.
17.
18.
Human L3MBTL1, which contains three malignant brain tumor (MBT) repeats, binds monomethylated and dimethylated lysines, but not trimethylated lysines, in several histone sequence contexts. In crystal structures of L3MBTL1 complexes, the monomethyl- and dimethyllysines insert into a narrow and deep cavity of aromatic residue-lined pocket 2, while a proline ring inserts into shallower pocket 1. We have also engineered a single Y to E substitution within the aromatic cage of the BPTF PHD finger, resulting in a reversal of binding preference from trimethyl- to dimethyllysine in an H3K4 sequence context. In both the "cavity insertion" (L3MBTL1) and "surface groove" (PHD finger) modes of methyllysine recognition, a carboxylate group both hydrogen bonds and ion pairs to the methylammonium proton. Our structural and binding studies of these two modules provide insights into the molecular principles governing the decoding of lysine methylation states, thereby highlighting a methylation state-specific layer of histone mark readout impacting on epigenetic regulation.  相似文献   

19.
Recently, progress has been made towards the structural characterization of the novel folds of RNA-bound arginine-rich peptides and the architecture of their peptide-binding RNA pockets in viral and phage systems. These studies are based on an approach whereby the peptide and RNA components are minimalist modular domains that undergo adaptive structural transitions upon complex formation. Such complexes are characterized by recognition alignments in which the tertiary fold of the RNA generates binding pockets with the potential to envelop minimal elements of protein secondary structure. Strikingly, the peptides fold as isolated alpha-helical or beta-hairpin folds within their RNA major-groove targets, without the necessity of additional appendages for anchorage within the binding pocket. The RNA peptide-binding pocket architectures are sculptured through precisely positioned mismatches, triples and looped-out bases, which accommodate amino acid sidechains through hydrophobic, hydrogen bonding and ionic intermolecular contacts. By contrast, protein modules associated with the HIV-1 nucleocapsid and MS2 phage coat target their RNA binding sites through the insertion of specificity-determining RNA base residues within conserved hydrophobic pockets and crevices on the protein surface, with the bases anchored through hydrogen bonding interactions. These alternative strategies of RNA recognition at the peptide and protein module level provide novel insights into the principles, patterns and diversity of the adaptive transitions associated with the recognition process.  相似文献   

20.
Histone acetyltransferase 1 (HAT1) is an enzyme that is likely to be responsible for the acetylation that occurs on lysines 5 and 12 of the NH(2)-terminal tail of newly synthesized histone H4. Initial studies suggested that, despite its evolutionary conservation, this modification of new histone H4 played only a minor role in chromatin assembly. However, a number of recent studies have brought into focus the important role of both this modification and HAT1 in histone dynamics. Surprisingly, the function of HAT1 in chromatin assembly may extend beyond just its catalytic activity to include its role as a major histone binding protein. These results are incorporated into a model for the function of HAT1 in histone deposition and chromatin assembly. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号