首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salmonella typhimurium multiplication inside eukaryotic host cells is critical for virulence. Salmonella typhimurium strain SL1344 appears as filaments upon growth in macrophages and MelJuSo cells, a human melanoma cell line, indicating a specific blockage in the bacterial cell division process. Several studies have investigated the host cell response impairing bacterial division. However, none looked at the bacterial factors involved in inhibition of Salmonella division inside eukaryotic cells. We show here that blockage in the bacterial division process is sulA-independent and takes place after FtsZ-ring assembly. Salmonella typhimurium genes in which mutations lead to filamentous growth within host cells were identified by a large scale mutagenesis approach on strain 12023, revealing bacterial functions crucial for cell division within eukaryotic cells. We finally demonstrate that SL1344 filamentation is a result of hisG mutation, requires the activity of an enzyme of the histidine biosynthetic pathway HisFH and is specific for the vacuolar environment.  相似文献   

2.
3.
冉茜  胡昌华 《生命科学》2009,(3):452-455
减毒鼠伤寒沙门菌由于具有肿瘤靶向性,能在肿瘤组织中复制并产生抗肿瘤效果的能力,使肿瘤治疗获得了新契机。减毒鼠伤寒沙门菌作为细菌载体使目的基因在肿瘤组织内特异表达,表现出良好治疗效果。近期研究发现,单独使用突变后的菌株A1-R在裸鼠模型上治疗乳腺癌和前列腺癌分别可达到40%和50%的治愈率;在小鼠肿瘤转移模型中也展现出良好的治疗效果。鼠伤寒沙门菌作为肿瘤治疗制剂有诱人的前景。本文就这些研究的最新进展做一综述。  相似文献   

4.
【背景】大肠杆菌病和沙门菌病是最常见的家禽细菌性疾病,给养禽业造成严重经济损失。另外,禽大肠杆菌和沙门菌也是重要的人畜共患病原菌,可通过禽类及其产品传播给人类,对人类健康造成严重威胁。加强禽大肠杆菌和沙门菌的快速鉴别检测,对养禽业和公共卫生都具有重要意义。【目的】建立禽大肠杆菌、肠炎沙门菌、鼠伤寒沙门菌、鸡白痢沙门菌和鸡伤寒沙门菌的多重PCR检测方法。【方法】通过比较分析确定禽致病性大肠杆菌、肠炎沙门菌、鼠伤寒沙门菌、鸡白痢沙门菌和鸡伤寒沙门菌的特异靶标基因,设计5对特异性引物,通过条件优化建立多重PCR方法,分析该多重PCR方法的特异性、敏感性及可靠性。【结果】该方法能特异性地鉴定禽致病性大肠杆菌、肠炎沙门菌、鼠伤寒沙门菌、鸡白痢沙门菌和鸡伤寒沙门菌,每个PCR反应的最低检出限分别为103 CFU细菌和100 pg基因组DNA。临床分离菌株检测显示,多重PCR与传统血清学方法结果一致。【结论】建立的多重PCR方法能够快速鉴别禽致病性大肠杆菌和不同血清型沙门菌,对禽大肠杆菌病和沙门菌病的流行病学调查及临床检测具有重要意义。  相似文献   

5.
Multi-drug resistance greatly limits the efficacy of conventional blood-born chemotherapeutics, which have limited ability to penetrate tumor tissue and are ineffective at killing quiescent cells far from tumor vasculature. Nonpathogenic, motile bacteria can overcome both of theses limitations. We hypothesize that the accumulation of S. typhimurium in tumors is controlled by two mechanisms: (1) chemotaxis towards compounds produced by quiescent cancer cells and (2) preferential growth within tumor tissue. We tested this hypothesis by quantifying the relative contributions of these mechanisms using the tumor cylindroid model, which mimics the microenvironments of in vivo tumors. Time-lapse fluorescence microscopy was used to measure the accumulation of GFP-labeled S. typhimurium into cylindroids of different size. Cylindroids larger than 500 microm in diameter contain quiescent cells, whereas cylindroids smaller than 500 microm do not. Spatio-temporal profiles of bacterial concentration were fit to a mathematical model to calculate two parameters that describe bacterial interaction with tumors: intratumoral bacterial growth, M, and intratumoral bacterial chemoattraction, K. It was observed that S. typhimurium is attracted to cylindroids and accumulate at long time points in the central region of large cylindroids. Both intratumoral bacterial growth and chemotaxis were significantly greater in large cylindroids, suggesting that quiescent cells secrete bacterial chemoattractants and the presence of necrotic and quiescent cells enable S. typhimurium to replicate in tumor tissue. In this study, several mechanisms of S. typhimurium accumulation in solid tumors have been quantified, which we believe is an important step in the development of bacterial-based therapeutics to target tumor quiescence.  相似文献   

6.
Our laboratory has previously developed a tumor-targeting double-auxotrophic mutant of Salmonella typhimurium termed A1-R. The present report demonstrates that S. typhimurium A1-R destroys tumor blood vessels and this is enhanced in tumors with high vascularity. Red fluorescent protein (RFP)-expressing Lewis lung cancer cells (LLC-RFP) were transplanted subcutaneously in the ear, back skin, and footpad of nestin-driven green fluorescent protein (ND-GFP) transgenic nude mice, which selectively express GFP in nascent blood vessels. Color-coded in vivo imaging demonstrated that the LLC-RFP ear tumor had the highest cell density and the footpad tumor had the least with the ear tumor having more abundant blood vessels than that on the back or footpad. The tumor-bearing mice were treated with A1-R bacteria via tail-vein injection. Tumors in the ear were the earliest responders to bacterial therapy and hemorrhaged severely the day after A1-R administration. Tumors growing in the back were the second fastest responders to bacterial treatment and appeared necrotic 3 days after A1-R administration. Tumors growing in the footpad had the least vascularity and were the last responders to A1-R. Therefore, tumor vascularity correlated positively with tumor efficacy of A1-R. The present study suggests that bacteria efficacy on tumors involved vessel destruction which depends on the extent of vascularity of the tumor.  相似文献   

7.
Salmonella typhimurium is an intracellular pathogen that can survive and replicate in macrophages. One of the host defense mechanisms that S. typhimurium encounters upon infection is superoxide produced by the phagocytes' NADPH-oxidase. Salmonella has evolved numerous ways of coping with superoxide in the extracellular environment. In addition, Salmonella has to defend itself against superoxide produced as a by-product of aerobic respiration. Over the last decade, research on bacterial mutants has led to the identification of Salmonella strains that differ from their parental strain in susceptibility to superoxide in vitro. However, the consequences of such mutations for bacterial virulence are highly variable, indicating that superoxide sensitivity per se is not a characteristic that renders Salmonella less virulent. By discussing various bacterial mutants classified according to their in vitro sensitivity to superoxide, we will exemplify the complex mechanisms that Salmonella has evolved to cope with superoxide stress.  相似文献   

8.
Salmonella enterica serovar Typhimurium (S. typhimurium) is a gram-negative facultative intracellular pathogen that can infect a broad range of mammalian hosts. Following invasion of host cells, the majority of S. typhimurium are known to reside in a membrane-bound compartment known as the Salmonella-containing vacuole (SCV). S. typhimurium actively remodels this compartment using bacterial virulence proteins, called effectors, to establish a protected niche where it can replicate. S. typhimurium delivers more than 30 effectors into the host cell cytosol by bacterial type three secretion systems, encoded by Salmonella pathogenicity island 1 or 2 (SPI-1 or SPI-2). Recent studies have revealed a critical role for the SPI-1 effector SopB in 'directing traffic' at early stages of infection, allowing the bacteria to control SCV maturation by modulating its interaction with the endocytic system. At later stages of infection, the SCV establishes a 'nest' near the Golgi where optimal bacterial growth takes place. In this study, we highlight these recent developments in our understanding of SCV trafficking.  相似文献   

9.
Administration of facultative anaerobic bacteria such as Salmonella enterica serovar Typhimurium as anticancer treatment holds a great therapeutic potential. Here, we tested different routes of application of S. typhimurium with regard to tumor colonization and therapeutic efficacy. No differences between intravenous and intraperitoneal infection were observed, often leading to a complete tumor clearance. In contrast, after oral application, tumor colonization was inefficient and delayed. No therapeutic effect was observed under such conditions. We also showed that tumor invasion and colonization were independent of functional Salmonella pathogenicity island (SPI) 1 and SPI 2. Furthermore, tumor invasion and colonization did not require bacterial motility or chemotactic responsiveness. The distribution of the bacteria within the tumor was independent of such functions.  相似文献   

10.
Living in the danger zone: innate immunity to Salmonella   总被引:3,自引:0,他引:3  
Phagocytic cells, including macrophages, neutrophils and dendritic cells, are critical components of the innate immune response to bacterial pathogens such as Salmonella typhimurium. These cells can have several roles during the early stage of an infection including controlling bacterial replication and producing cytokines and chemokines that activate and recruit additional cells. Macrophages, neutrophils and dendritic cells increase in number early after oral Salmonella infection and produce cytokines important in host survival such as tumor necrosis factor alpha (TNF-alpha). All three phagocytic cell types also harbor bacteria during infection. Natural killer cells, natural killer T cells and T cell receptor alpha beta T cells also respond rapidly to infection and are early sources of interferon-gamma during infection with Salmonella. Studies using infection models with Salmonella are providing a picture of the innate response to bacteria and insight into the role of defined cell types and cytokines important in the transition from innate to adaptive immunity.  相似文献   

11.
A bacterial cell surface display technique based on an ice nucleation protein has been employed for the development of live vaccine against viral infection.Due to its ubiquitous ability to invade host cells,Salmonella typhimurium might be a good candidate for displaying viral antigens.We demonstrated the surface display of domain III of Japanese encephalitis virus E protein and the enhanced green fluorescent protein on S.typhimurium BRD509 using the ice nucleation protein.The effects of the motif in the ice nucleation protein on the effective display of integral protein were also investigated.The results showed that display motifs in the protein can target integral foreign protein on the surface of S.typhimurium BRD509.Moreover,recombinant strains with surface displayed viral proteins retained their invasiveness,suggesting that the recombinant S.typhimurium can be used as live vaccine vector for eliciting complete immunogenicity.The data may yield better understanding of the mechanism by which ice nucleation protein displays foreign proteins in the Salmonella strain.  相似文献   

12.
The development of live bacterial vaccines is reviewed, in particular aromatic-dependent Salmonella, either for protection against the corresponding infections (including typhoid fever) or as carrier-presenter of antigens of unrelated pathogens or of DNA specifying them. Aromatic-dependent Salmonella live vaccines are also compared with BCG and Ty21a and the recent records of exceptional situations are discussed in which aroA (deletion) strains of Salmonella typhimurium cause progressive disease in mice.  相似文献   

13.
Autophagy acts as an intrinsic defense system against intracellular bacterial survival. Recently, multiple cellular pathways that target intracellular bacterial pathogens to autophagy have been described. These include the Atg5/LC3 pathway, which targets Shigella, the ubiquitin (Ub)-NDP52-LC3 pathway, which targets Group A Streptococcus (GAS) and Salmonella typhimurium, the Ub-p62-LC3 pathway, which targets Mycobacterium tuberculosis, Listeria monocytogenes and S. typhimurium, and the diacylglycerol-dependent pathway, which targets S. typhimurium. In addition, the bacterial invasion process is targeted by the NOD1 or NOD2-Atg16LLC3 pathway. Bacterial pathogens with an intracytosolic lifestyle, i.e., those capable of inducing actin polymerization and cell-to-cell spreading, also employ diverse tactics to evade autophagic recognition. Thus, Shigella, L. monocytogenes and Burkholderia pseudomallei deploy highly evolved systems to evade autophagic recognition and growth restriction. Here, we briefly review current knowledge of host recognition of L. monocytogenes by the innate immune system, and highlight how autophagic recognition by the host is overcome by bacterial countermeasures.  相似文献   

14.
It has been found that synthesis of D-amino acid dehydrogenase in Salmonella typhimurium is stimulated by cyclic AMP and crp gene product. This indicates that catabolic control of the dehydrogenase resembles other bacterial systems of catabolic repression. We have isolated S. typhimurium mutants, dadR, which are resistant to L-methionine-interference with D-histidine utilization and are able to utilize D-tryptophan as a precursor of L-tryptophan. Mapping data indicate that the dadR locus is closely linked to dadA coding for the structure of D-amino acid dehydrogenase. The synthesis of the dehydrogenase in dadR mutants is completely insensitive to the repression by glucose, but remains inducible by L-alanine. We conclude thereof that dadR mutants have changes in the promoter region which increase the expression of the dadA gene in the presence of glucose metabolism. A likely possibility that induction of the dad operon by alanine might be under positive control is discussed.  相似文献   

15.
16.
Salmonella spp. are cytotoxic for cultured macrophages   总被引:25,自引:2,他引:23  
We have shown by a variety of microscopical and biochemical techniques that Salmonella spp. are cytotoxic for cultured J774A.1 and bone marrow-derived murine macrophages. The cytotoxicity is initially manifested by inhibition of membrane ruffling and macropinocytosis in infected macrophages, and is followed by cell death. Macrophages killed by Salmonella spp. exhibited features of apoptosis such as condensation and fragmentation of chromatin, membrane blebbing, and the presence of cytoplasmic nucleosomes and apoptotic bodies. Cytotoxicity does not require bacterial internalization as cytochalasin D, a drug that prevents bacterial uptake, did not prevent Salmonella -induced macrophage cell death. However, the cytotoxic effects are strictly dependent upon the expression of the invasion-associated Type III protein-secretion system encoded at centisome 63 of the Salmonella chromosome. Wild-type Salmonella typhimurium grown under conditions that do not allow optimal expression of this system or strains of Salmonella carrying mutations in genes that encode components of this protein-secretion system were devoid of macrophage cytotoxicity. In addition, mutations in invJ , spaO , sipB , sipC and sipD, which encode proteins that are secreted via this secretion apparatus and are required for bacterial entry into non-phagocytic cells, also abolished the toxicity. In contrast, mutations in sipA and sptP , which encode secreted proteins that are not required for bacterial invasion, had no effect on macrophage cytotoxicity. These results indicate a close correlation between the mechanisms of bacterial internalization into non-phagocytic cells and those that lead to macrophage cytotoxicity. Host-adapted serotypes of Salmonella such as S. typhi , S. gallinarum and S. dublin were also toxic for murine macrophages, indicating that this virulence property is probably present in most Salmonella spp. and is not associated with the mechanisms responsible for host range.  相似文献   

17.
The ability of human milk, as well as its protein fractions, to inhibit the adhesion and invasion of Salmonella typhimurium to HeLa cells was investigated. The results revealed that milk secretory immunoglobulin A (sIgA) inhibited neither the adherence nor the bacterial invasion; however, free secretory component and lactoferrin inhibited the bacterial adhesion and interacted with several bacterial proteins. Our data indicated that glycoproteins such as free secretory component and lactoferrin could act as protective compounds against infant enteric diseases, possibly binding to bacterial surface and blocking adhesion, the primordial step of S. typhimurium infection.  相似文献   

18.
During septic shock with Gram-negative microorganisms, mortality is determined by two independent factors: high concentrations of circulating proinflammatory cytokines and multiplication of the microorganisms in the organs of the host. We studied the role of endogenous tumor necrosis factor-alpha (TNF) and lymphotoxin-alpha (LT) in the pathogenesis of lethal endotoxemia and infection with viable Salmonella typhimurium. Compared to wild-type control mice, TNF-/-LT-/- knock-out mice were more resistant (100% versus 25% mortality) to a lethal challenge with LPS, due to a significantly decreased production of the proinflammatory cytokines TNF, IL-1alpha and IL-1beta. In contrast, TNF-/-LT-/- mice were highly susceptible to infection with viable S. typhimurium as compared to wild-type mice (100% versus 0% mortality), and this was accompanied by a 100-fold greater bacterial load in their organs. The effect of endogenous TNF and LT during infection was mediated by a defective recruitment of neutrophils at the site of infection, as well as a reduced intracellular killing of S. typhimurium by these cells. These results show that TNF and LT have crucial, yet opposite effects on lethal endotoxemia induced by S. typhimurium LPS and on the infection of mice with live Salmonella microorganisms, and suggest caution when extrapolating results obtained in the lethal endotoxemia model to bacteremia in patients.  相似文献   

19.
20.
Accessory replicons of species of Salmonella and Shigella.   总被引:1,自引:0,他引:1       下载免费PDF全文
Shigella and Salmonella strains isolated from clinical samples were examined. Out of 42 Shigella strains tested, 17 (40%) were found to be colicinogenic and another 3 were lysogenic. All three lysogens yielded a phage antigenically homologous to coliphage P2. Out of 30 strains tested, only 1 was found to be resistant to both neomycin and sulfamethoxazole. Out of 48 strains of Salmonella tested for drug resistance, only 2 showed multiple drug resistance. In contrast to Shigella isolates, the Salmonella isolates were infrequently (approximately 5%) bacteriocinogenic. The frequency of lysogeny in Salmonella strains was found to be 6% when tested on Salmonella typhimurium LT2, but by using a set of five indicators belonging to species Salmonella potsdam, Salmonella mbadanka, Salmonella dublin, Salmonella london, and Salmonella wandsworth, 50% of the strains were shown to be lysogenic. Salmonella phages related to P22 were recoverable from Salmonella saintpaul, Salmonella indiana, and Salmonella heidelberg. Some isolates of S. typhimurium yielded a temperature-sensitive and P22-heterologous phage which was found to be a more efficient transducer of bacterial genetic markers than P22. EcoRI-generated fragments of the DNA of some phages permitted the establishment of a clonal descent for some of the wild-type lysogenic bacterial strains. This last observation points out the potential usefulness of prophages as epidemiological markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号