首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Laboratory prescreening ofRhizobium trifolii for acid tolerance, based upon the ability of rhizobia to grow in acid media (pH 4.2) containing Al (15 M), was successful for the selection of strains capable of survival in acid soil.Both sterile and non-sterile soils of varying acidity were inoculated with several strains ofR. trifolii.Acid tolerant strains generally had significantly higher populations at every sample period than an acid sensitive strain. Amelioration of soil acidity by liming improved persistence of all strains. Soil sterilization by autoclaving adversely affected survival of all strains at each soil acidity level.Paper Number 8766 of the Journal Series, North Carolina Agricultural Research Service, Raleigh, NC 27650, USA.  相似文献   

2.
Measurements of multiplication in liquid culture indicated that fast-growing Lotus rhizobia (Rhizobium loti) were tolerant of acidity and aluminium (at least 50 μM A1 at pH 4.5). Slow-growing Lotus rhizobia (Bradyrhizobium sp. (Lotus)) were less tolerant of acidity but equally tolerant of A1. Both genera were able to nodulateLotus pedunculatus in an acid soil (pH 4.1 in 0.01M CaCl2) and the slow-growing strains were more effective than the fast-growing strains in this soil over 30 days.  相似文献   

3.
Five strains of Bradyrhizobium japonicum (USDA 6, 110, 122, 138, and 143) were screened in cell culture for tolerance to acidity (pH 4.2, 4.4, and 4.6) and Al (0, 3, 4, 5, and 6 mg L–1) under low P conditions. Each strain was later grown in association with seven soybean [Glycine max. (L) Merr.] cultivars which were also screened for tolerance to the same stresses in nutrient culture to determine which soybean-Bradyrhizobium combinations would establish the most effective symbiotic N2 fixing relationships. Results indicated that strains USDA 110 and 6 were more tolerant than USDA 122, 138 and 143 with USDA 110 being the most tolerant. Acidity appeared to be the more severe stress; but even when strains showed tolerance to the stresses, cell numbers were significantly reduced. This suggests that colonization of soils and soybean roots can be adversely affected under similar conditions in the field which may result in reduced nodulation. The strains found to be more tolerant to the stresses were more effective N2 fixers in symbiosis with all soybean cultivars, with USDA 110 being definitely superior. The association between the more tolerant strains and cultivars had the largest nitrogenase activity. Further studies on the inclusion of tolerant Bradyrhizobium strains in inoculum used on tolerant soybean cultivars in the field are warranted.  相似文献   

4.
Effects of soil acidity on groundnut-Bradyrhizobium symbiotic performance were studied in a potted, sandy soil in a glasshouse in Zimbabwe. The soil was limed to soil-pH levels of 5.0 and 6.5. Soil acidity negatively affected plant development, measured as leaf area and plant dry weight, while nodulation was enhanced. This acidity-enhanced nodulation was most evident when nodulation was caused by the indigenousBradyrhizobium population. Effects of soil acidity differed between groundnut cultivars andBradyrhizobium spp. strains, the former having greater importance. TwoArachis hypogaea L. Spanish-type cultivars, Falcon and Plover, performed equally well at neutral soil pH, but Falcon was more acid tolerant. Comparison of the symbiotic performance in neutral versus acid soil of twoBradyrhizobium spp. strains, MAR 411 (3G4b20) and MAR 1510 (CB 756), showed that MAR 411 performed superiorly in neutral soil, but MAR 1510 in acid soil. The indigenousBradyrhizobium population was more effective than was inoculation with strains MAR 411 or MAR 1510. Comparison of twelveBradyrhizobium spp. strains for their symbiotic performance in acid soil showed that some strains were totally ineffective under acidity stress (MAR 253, MAR 967 and MAR 1506), while others performed well.Bradyrhizobium spp. strain MAR 1576 (32 H1) ranked highest for nitrogen accumulation, plant dry weight and leaf area, with strains MAR 1555 (TAL 11) and MAR 1510 following closely. Nitrate fertilisation of groundnut plants led to soil alkalinisation, while nitrogen fixation resulted in soil acidification. Soil acidity in combination with soil sterilisation gave rise to symptoms associated with Al and Mn toxicity.  相似文献   

5.
Forty strains ofRhizobium phaseoli, isolated from Kenyan soils, were tested for infectiveness on common bean (Phaseolus vulgaris L.). 28 strains were infective and a cultivar × Rhizobium interaction was observed. 48 strains were screened for tolerance of acidity and Al in liquid culture. Assessment of visible turbidity after 14 days indicated 34 strains tolerant of pH 4.5 but none tolerant of pH 3.5. No strain was tolerant of 50 M Al at pH 5.5. Three strains were tolerant of 20 M Al at pH 5.5 and 10 M Al at pH 4.5. Screening on a solid medium identified strains tolerant of 20 and 50 M Al at pH 5.5 and 4.5 which were sensitive to these treatments in liquid culture. Those strains tolerant to 20 M Al at pH 4.5 and 5.5 in liquid culture were correctly identified on the solid medium.  相似文献   

6.
Indigenous rhizobial population is among the factors which influence increased crop yield through inoculation with elite strains. In this study, we compared in greenhouse conditions the competitiveness of Rhizobium strain ISRA 355 for nodulation of the common bean (Phaseolus vulgaris) cultivated in different unsterile Senegal soils in terms of pH, N and C contents. The strain ISRA 355 produced a stable GUS+ transconjugant which was used for competition with indigenous soil rhizobia in six localities. At Bayakh, the transconjugant ISRA 355gusA was less competitive than the indigenous rhizobial strains, whereas in the other localities, it was more competitive since it occupied more than 90% of the nodules. Thus the Rhizobium strain ISRA 355 should be used for successfully inoculating the common bean in Senegal soils.  相似文献   

7.
The effects of soil type (an acid peat and 2 acid brown earths) andFrankia source (3 spore-positive crushed nodule inocula and spore-negative crushed nodules containing the singleFrankia ArI5) on nodulation, N content and growth ofAlnus glutinosa andA. rubra were determined in a glasshouse pot experiment of two years duration. Plants on all soils required additional P for growth. Growth of both species was very poor on peat withA. glutinosa superior toA. rubra. The former species was also superior toA. rubra on an acid brown earth with low pH and low P content. Some plant-inoculum combinations were of notable effectivity on particular soils but soil type was the major source of variation in plant weight. Inoculation with crushed nodules containingFrankia ArI5 only gave poor infection of the host plant, suggesting that inoculation with locally-collected crushed nodules can be a preferred alternative to inoculation withFrankia isolates of untested effectivity. Evidence of adaptation ofFrankia to particular soils was obtained. Thus, while the growth of all strains was stimulated by mineral soil extracts, inhibitory effects of peat extracts were more apparent with isolates from nodules from mineral soils than from peat, suggesting that survival ofFrankia on peat may be improved by strain selection.  相似文献   

8.
Tang  C.  Buirchell  B. J.  Longnecker  N. E.  Robson  A. D. 《Plant and Soil》1993,155(1):513-516
Commercial lupins grow poorly on alkaline and neutral fine-textured soils. Genotypic variation exists among lupins. The present study compared the growth of 13 lupin genotypes, including introduced cultivars and wild types, in an alkaline loamy soil and an acid loamy soil.Plants grown in the alkaline and acid soils did not show obvious symptoms of iron deficiency at any stage. There was however a large variation of shoot fresh weight among genotypes in response to the alkaline soil with L. atlanticus and L. pilosus being more tolerant than L. luteus, L. cosentinii, L. albus and L. angustifolius. Some variation also existed among genotypes of L. angustifolius. In addition, root growth was retarded on the alkaline soil except for L. atlanticus, L. pilosus P20955 and L. albus Kiev mutant. In the alkaline soil, root growth at week 2 correlated well with the shoot fresh weight at week 12. The results suggest that early root elongation may be useful for screening tolerant genotypes for alkaline soils.  相似文献   

9.
王改萍  祝长青  王茹 《微生物学通报》2021,48(11):4134-4144
[背景] 多种甲基杆菌属细菌对寄主植物有促生作用,其分布区域较广。筛选具有耐盐与促生特性的甲基杆菌属菌株可为微生物菌肥的开发提供依据。[目的] 从新疆乌尔禾地区盐渍土壤中筛选耐盐促生菌,对其培养基成分进行优化及促生能力进行研究,为微生物菌肥的开发提供依据。[方法] 采用阿须贝无氮培养基筛选耐盐菌株,对菌株进行基因序列分析及生理生化测定,采用平板试验法初步研究该菌对拟南芥的生长影响。[结果] 筛选出中度耐盐菌株W-1,经鉴定为甲基杆菌属(Methylobacteriumsp.)。菌株生长最佳无机盐为NaCl,最适浓度为1%–3%,最高耐受浓度达7%。最佳氮源为酸水解酪蛋白,产生长素最高达33.53 mg/L。溶磷能力达28.71 mg/L。菌株W-1接种拟南芥幼苗后叶绿素a和叶绿素b含量均高于对照组,同时对其根系发育有显著的促进作用。[结论] 菌株W-1促生性能显著,可为生物肥料制备提供菌种资源。  相似文献   

10.
Summary Twenty-nine genotypes of Old World bluestems (Bothriochloa intermedia, B. ischaemum andB. caucasica) were screened for Al tolerance in greenhouse pots of acid Tatum subsoil which was unlimed at pH 4.1 and limed at pH 5.3. Three strains of weeping lovegrass (Eragrostis curvula) and El Reno side-oats grama grass (Bouteloua curtipendula) were also included as indicators of acid and alkaline soil tolerance, respectively. At pH 4.1 only 5 of the 29 bluestems and the 3 weeping lovegrasses produced measurable yields of tops or roots. The remaining 24 bluestems and side-oats grama either died or barely remained alive (due to frequent watering) with no appreciable growth. Weeping lovegrass was significantly more tolerant to the acid soil than any of the bluestems; relative top yields (pH 4.1/pH 5.3) were 101, 94 and 79% for the FQ71, common and FQ22 strains, respectively. Among the 5 bluestems that survived at pH 4.1, relative top yields ranged from 19 to 46%. Bluestems PI 300860 and PI 300857 (bothB. intermedia) appeared more tolerant than PI 300886 (B. intermedia) and PI 312442 (B. caucasica) with PI 300858 (B. intermedia) being intermediate; however, all 5 showed promise for use on acid soils that are high in exchangeable Al. Genotypes that failed to grow at pH 4.1 included members ofB. intermedia, B. ischaemum andB. caucasica. Some of these, such as PI 300825 (B. intermedia) and PI 300765 (B. caucasica), were among the highest yielders at pH 5.3. None of the 10 genotypes ofB. ischaemum survived at pH 4.1.  相似文献   

11.
Dorner JW  Horn BW 《Mycopathologia》2007,163(4):215-223
A 2-year study was carried out to determine the effect of applying nontoxigenic strains of Aspergillus flavus and A. parasiticus to soil separately and in combination on preharvest aflatoxin contamination of peanuts. A naturally occurring, nontoxigenic strain of A. flavus and a UV-induced mutant of A. parasiticus were applied to peanut soils during the middle of each of two growing seasons using a formulation of conidia-coated hulled barley. In addition to an untreated control, treatments included soil inoculated with nontoxigenic A. flavus only, soil inoculated with nontoxigenic A. parasiticus only, and soil inoculated with a mixture of the two nontoxigenic strains. Plants were exposed to late-season drought conditions that were optimal for aflatoxin contamination. Results from year one showed that significant displacement (70%) of toxigenic A. flavus occurred only in peanuts from plots treated with nontoxigenic A. flavus alone; however, displacement did not result in a statistically significant reduction in the mean aflatoxin concentration in peanuts. In year two, soils were re-inoculated as in year one and all treatments resulted in significant reductions in aflatoxin, averaging 91.6%. Regression analyses showed strong correlations between the presence of nontoxigenic strains in peanuts and aflatoxin reduction. It is concluded that treatment with the nontoxigenic A. flavus strain alone is more effective than the A. parasiticus strain alone and equally as effective as the mixture. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

12.
Factors affecting the establishment of Alnus/Frankia symbioses were studied partly by following the survival ofFrankia strains exposed to different soil conditions, and partly by investigating the effect of pH on nodulation. TwoFrankia strains were used, both of the Sp type (sporangia not formed in nodules). One of the strains sporulated heavily, while the other formed mainly hyphae. The strains originated fromAlnus incana root nodules growing in soils of pH 3.5 and 5.0. The optimum pH for their growth in pure culture was found to be 6.7 and 6.2, respectively. The strains were introduced into twoFrankia-free soils, peat and fine sand. Their survival, measured as the persistance of nodulation capacity using the plant infection technique, was followed for 14 months. The survival curves of the strains were similar despite the morphological differences between the strains in pure culture. The nodulation capacities declined over time both at 14 and 22°C. Survival was better in soils limed to a pH above 6 than in soils at their original pH (peat 2.9, fine sand 4.2). The effect of pH on nodule formation in Alnus seedlings by theFrankia strains was studied in liquid culture. The number of nodules increased linearly within the pH range studied (3.5–5.8). No nodules were formed at pH 3.5.  相似文献   

13.
A study was conducted to determine whether the survival of Rhizobium phaseoli in acid soils could be predicted on the basis of the tolerance of the organism to acidity in culture. Of 16 strains tested, all grew in culture at pH 4.6, but only those that grew at pH 3.8 survived in soils having pH values of 4.1 to 4.6. Strains that tolerated the lowest pH values in culture were tolerant of the highest aluminum concentrations. In one acid soil, an acid-tolerant strain was unable to survive in numbers greater than 100/g, but the poor survival was not related to the level of extractable aluminum or manganese in the soil. Reproduction of an acid-tolerant strain of R. phaseoli was enhanced in the rhizosphere of Phaseolus vulgaris in both acid and limed soils, but stimulation of an acid-sensitive strain by the plant occurred only in the limed soil. These results indicate that cultural tests can be used to predict the ability of R. phaseoli to survive in acid soil.  相似文献   

14.
Summary Antibiotic resistant mutants 8-0 StrR, 110 TetR and 138 KanR derived from wild typeRhizobium japonicum strains were inoculated into silt loam soil to cell concentrations greater than 2×108/g of soil. Population changes were monitored using antibiotic media and strain identification was done using immunodiffusion assay on microcores of soil. Immunodiffusion bands formed by the mutant strains with homologous antisera essentially duplicated bands formed by the parent strain. Strains 110 TetR and 8-0 StrR had cross reacting antigens whereas antigens of strain 138 KanR reacted only with the homologous antiserum. Populations ofR. japonicum strains introduced into sterile soil increased over a period of four weeks under both single and mixed culture inoculations. All populations decreased by the end of six weeks and thereafter remained constant. When theseR. japonicum strains were introduced into non-sterile soil, the population did not increase over the initial population added. Population decreased gradually for two weeks and then maintained thereafter. It was possible to recover very low populations of antibiotic resistantR. japonicum strains from both sterile and unsterile soils using media containing specific antibiotics. Detection ofR. japonicum strains by immunodiffusion was accomplished only when the population was 109 cells/g of soil. The method using antibiotic resistant mutants permitted an evaluation of the interactions of variousR. japonicum strains in soil with respect to their survival and multiplication.  相似文献   

15.
Summary Goat's rue (Galega orientalis) is a potential perennial forage legume for northern temperate acid soils. Greenhouse experiments were performed to compare symbiotically nitrogen fixing goat's rue with plants receiving mineral nitrogen in five different acid soils. Soil acidity had the same effect on yields of symbiotically grown plants as on plants receiving mineral nitrogen, suggesting that the acid sensitivity of the symbiosis was not limiting plant growth, even under very acidic conditions. The survival of an antibiotic resistant Rhizobium (Galega) strain in acid soil and freezing conditions was also studied. The survival of the bacteria was not affected at 15°C, when the pH of the soil (measured in 0.01M CaCl2) was 5.2 or 4.9. In pH 3.4, and after freezing to –5°C, the population density decreased from 3×108 to 1×105/g in a few weeks. It is concluded that goat's rue, its symbiotic nitrogen fixation and R. (Galega) are tolerant of moderately acid agricultural soils, but that harsh winters may reduce bacterial numbers in the soil.  相似文献   

16.
From several native clover species, growing in six different soil types, 170 Rhizobium leguminosarum biovar trifolii strains were isolated, covering the central and southern regions of Portugal. The effectiveness of the strains varied from ineffective to highly effective on T. subterraneum cv. Clare and on T. fragiferum cv. Palestine, with a predominance of medium and high effectiveness on both host plants. The effectiveness was not influenced by provenence (soil or plant), except for the strains from the rankers soils and for the strains isolated from T. pratense, that were ineffective or medium effective on T. subterraneum.Selected strains were evaluated for effectiveness on T. subterraneum cv. Clare, using the commercial strain TA1 as reference. Several of the isolated strains were more effective than TA1, indicating that local strains may be used to produce better inoculants.  相似文献   

17.
Competition from native soil rhizobia is likely to be an important factor limiting Phaseolus vulgaris L. inoculant response in Latin America. We used UMR 1116, a nod + fix natural mutant of Rhizobium leguminosarum bv phaseoli strain CC511, as a reference strain to study competition for nodulation sites in this species. When P. vulgaris cv Carioca was planted in soils containing different proportions of UMR 1116 and the effective and competitive strain UMR 1899, UMR 1116 occupied more than 50% of the nodules at all inoculant ratios tested, though increasing the proportion of UMR 1899 in the inoculant did enhance the number and percentage of effective nodules and plant dry weight. Sixty two strains of bean rhizobia were tested in competition with UMR 1116. An inoculant ratio of 1:1 was used, with all strains applied to the soil rather than to seeds. Strains varied in the number and percentage of effective nodules produced in competition with UMR 1116, and in plant dry weight, and there was a strong correlation between variation in each of these traits and plant N accumulation. Seven of the strains (UMR 1073, 1084, 1102, 1125, 1165, 1378 and 1384) were identified as both superior in competitive ability and active in N2 fixation. Site of placement of the inoculant and ambient temperature influenced strain response.Journal paper 16736, Agricultural Experiment Station, University of Minnesota, St. Paul, MN 55108, USA  相似文献   

18.
This study characterized genetically 30 fast-growing rhizobial strains isolated from nodules of Asian and modern soybean genotypes that had been inoculated with soils from disparate regions of Brazil. Analyses by rep-PCR (ERIC and REP) and RAPD indicated a high level of genetic diversity among the strains. The RFLP-PCR and sequencing analysis of the 16S rRNA genes indicated that none of the strains was related to Sinorhizobium (Ensifer) fredii, whereas most were related to Rhizobium tropici (although they were unable to nodulate Phaseolus vulgaris) and to Rhizobium genomic species Q. One strain was related to Rhizobium sp. OR 191, while two others were closely related to Agrobacterium (Rhizobium) spp.; furthermore, symbiotic effectiveness with soybean was maintained in those strains. Five strains were related to Bradyrhizobium japonicum and B. elkanii, with four of them being similar to strains carried in Brazilian inoculants, therefore modifications in physiological properties, as a shorter doubling time might have resulted from adaptation to local conditions. Phospholipid fatty acid analysis (PFLA) was less precise in delineating taxonomic relationships. The strains fit into eight Nod-factor profiles that were related to rhizobial species, but not to N2-fixation capacity or competitiveness. The data obtained highlight the diversity and promiscuity of rhizobia in the tropics, being capable of nodulating exotic legumes and might reflect ecological strategies to survive in N-poor soils; in addition, the diversity could also represent an important source of efficient and competitive rhizobial strains for the tropics. Putative new rhizobial species were detected only in undisturbed soils. Three species (R. tropici, B. japonicum and B. elkanii) were found under the more sustainable management system known as no-till, while the only species isolated from soils under conventional till was R. tropici. Those results emphasize that from the moment that agriculture was introduced into undisturbed soils rhizobial diversity has changed, being drastically reduced when a less sustainable soil management system was adopted.  相似文献   

19.
Survival of Rhizobium in Acid Soils   总被引:4,自引:4,他引:0       下载免费PDF全文
A Rhizobium strain nodulating cowpeas did not decline in abundance after it was added to sterile soils at pH 6.9 and 4.4, and the numbers fell slowly in nonsterile soils at pH 5.5 and 4.1. A strain of R. phaseoli grew when added to sterile soils at pH 6.7 and 6.9; it maintained large, stable populations in soils of pH 4.4, 5.5, and 6.0, but the numbers fell markedly and then reached a stable population size in sterile soils at pH 4.3 and 4.4. The abundance of R. phaseoli added to nonsterile soils with pH values of 4.3 to 6.7 decreased similarly with time regardless of soil acidity, and the final numbers were less than in the comparable sterile soils. The minimum pH values for the growth of strains of R. meliloti in liquid media ranged from 5.3 to 5.9. Two R. meliloti strains, which differed in acid tolerance for growth in culture, did not differ in numbers or decline when added to sterile soils at pH 4.8, 5.2, and 6.3. The population size of these two strains was reduced after they were introduced into nonsterile soils at pH 4.8, 5.4, and 6.4, and the number of survivors was related to the soil pH. The R. meliloti strain that was more acid sensitive in culture declined more readily in sterile soil at pH 4.6 than did the less sensitive strain, and only the former strain was eliminated from nonsterile soil at pH 4.8; however, the less sensitive strain also survived better in limed soil. The cell density of the two R. meliloti strains was increased in pH 6.4 soil in the presence of growing alfalfa. The decline and elimination of the tolerant, but not the sensitive, strain was delayed in soil at pH 4.6 by roots of growing alfalfa.  相似文献   

20.
盐渍化是世界性的土壤问题,植物促生根际细菌(plant growth-promoting rhizobacteria,PGPR)在盐碱地改良和促进植物生长方面具有独特优势。柽柳是典型的盐生植物,筛选其根际微生物并研究其促生效果与促生机制,以此开发微生物菌肥,具有重要的应用价值。【目的】筛选耐盐碱植物柽柳的根际微生物,对其基本特性、耐盐碱能力、促生功能及促生效果进行评估。【方法】从新疆巴楚境内野生柽柳根际土壤中筛选出一株耐盐碱细菌菌株Bachu 26;通过形态学观察、生理生化特性测定和16S rRNA基因序列分析,对该菌株进行鉴定;利用不同盐浓度(0%–20%)和不同pH(7.0–13.0),对菌株Bachu 26的耐盐耐碱能力进行测定;采用多种功能鉴定培养基测定其促生功能,并对生长素吲哚乙酸(indole-3-acetic acid, IAA)进行定量测定;通过二分格培养皿实验验证菌株产生挥发性酸性物质的能力;在普通培养皿上将拟南芥幼苗与菌株Bachu 26共培养,分析菌株对拟南芥幼苗的促生作用;在二分格培养皿上将拟南芥与Bachu 26隔离培养,分析菌株产生的挥发性酸性物质对拟南芥幼...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号