首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The rate of mutation for nucleotide substitution is generally higher among males than among females, likely owing to the larger number of DNA replications in spermatogenesis than in oogenesis. For insertion and deletion (indel) mutations, data from a few human genetic disease loci indicate that the two sexes may mutate at similar rates, possibly because such mutations arise in connection with meiotic crossing over. To address origin- and sex-specific rates of indel mutation we have conducted the first large-scale molecular evolutionary analysis of indels in noncoding DNA sequences from sex chromosomes. The rates are similar on the X and Y chromosomes of primates but about twice as high on the avian Z chromosome as on the W chromosome. The fact that indels are not uncommon on the nonrecombining Y and W chromosomes excludes meiotic crossing over as the main cause of indel mutation. On the other hand, the similar rates on X and Y indicate that the number of DNA replications (higher for Y than for X) is also not the main factor. Our observations are therefore consistent with a role of both DNA replication and recombination in the generation of short insertion and deletion mutations. A significant excess of deletion compared to insertion events is observed on the avian W chromosome, consistent with gradual DNA loss on a nonrecombining chromosome.  相似文献   

3.
Insertions and deletions (indels) in chloroplast noncoding regions are common genetic markers to estimate population structure and gene flow, although relatively little is known about indel evolution among recently diverged lineages such as within plant families. Because indel events tend to occur nonrandomly along DNA sequences, recurrent mutations may generate homoplasy for indel haplotypes. This is a potential problem for population studies, because indel haplotypes may be shared among populations after recurrent mutation as well as gene flow. Furthermore, indel haplotypes may differ in fitness and therefore be subject to natural selection detectable as rate heterogeneity among lineages. Such selection could contribute to the spatial patterning of cpDNA haplotypes, greatly complicating the interpretation of cpDNA population structure. This study examined both nucleotide and indel cpDNA variation and divergence at six noncoding regions (psbB-psbH, atpB-rbcL, trnL-trnH, rpl20-5'rps12, trnS-trnG, and trnH-psbA) in 16 individuals from eight species in the Lecythidaceae and a Sapotaceae outgroup. We described patterns of cpDNA changes, assessed the level of indel homoplasy, and tested for rate heterogeneity among lineages and regions. Although regression analysis of branch lengths suggested some degree of indel homoplasy among the most divergent lineages, there was little evidence for indel homoplasy within the Lecythidaceae. Likelihood ratio tests applied to the entire phylogenetic tree revealed a consistent pattern rejecting a molecular clock. Tajima's 1D and 2D tests revealed two taxa with consistent rate heterogeneity, one showing relatively more and one relatively fewer changes than other taxa. In general, nucleotide changes showed more evidence of rate heterogeneity than did indel changes. The rate of evolution was highly variable among the six cpDNA regions examined, with the trnS-trnG and trnH-psbA regions showing as much as 10% and 15% divergence within the Lecythidaceae. Deviations from rate homogeneity in the two taxa were constant across cpDNA regions, consistent with lineage-specific rates of evolution rather than cpDNA region-specific natural selection. There is no evidence that indels are more likely than nucleotide changes to experience homoplasy within the Lecythidaceae. These results support a neutral interpretation of cpDNA indel and nucleotide variation in population studies within species such as Corythophora alta.  相似文献   

4.
MOTIVATION: The two mutation processes that have the largest impact on genome evolution at small scales are substitutions, and sequence insertions and deletions (indels). While the former have been studied extensively, indels have received less attention, and in particular, the problem of inferring indel rates between pairs of divergent sequence remains unsolved. Here, I describe a novel and accurate method for estimating neutral indel rates between divergent pairs of genomes. RESULTS: Simulations suggest that new method for estimating indel rates is accurate to within 2%, at divergences corresponding to that of human and mouse. Applying the method to these species, I show that indel rates are up to twice higher than is apparent from alignments, and depend strongly on the local G + C content. These results indicate that at these evolutionary distances, the contribution of indels to sequence divergence is much larger than hitherto appreciated. In particular, the ratio of substitution to indel rates between human and mouse appears to be around gamma = 8, rather than the currently accepted value of about gamma = 14.  相似文献   

5.
The plant mitochondrial rps3 intron was analyzed for substitution and indel rate variation among 15 monocot and dicot angiosperms from 10 genera, including perennial and annual taxa. Overall, the intron sequence was very conserved among angiosperms. Based on length polymorphism, 10 different alleles were identified among the 10 genera. These allelic differences were mainly attributable to large indels. An insertion of 133 nucleotides, observed in the Alnus intron was partially or completely absent in the other lineages of the family Betulaceae. This insertion was located within domain IV of the secondary-structure model of this group IIA intron. A mobile element of 47 nucleotides that showed homology to sequences located in rice rps3 intron and in intergenic plant mitochondrial genomes was found within this insertion. Both substitution and indel rates were low among the Betulaceae sequences, but substitution rates were increasingly larger than indel rates in comparisons involving more distantly related taxa. From a secondary-structure model, regions involved in helical structures were shown to be well preserved from indels as compared to substitutions, but compensatory changes were not observed among the angiosperm sequences analyzed. Using approximate divergence times based on the fossil record, substitution and indel rate heterogeneity was observed between different pairs of annual and perennial taxa. In particular, the annual petunia and primrose evolved more than 15 and 10 times faster, for substitution and indel rates respectively, than the perennial birch and alder. This is the first demonstration of an evolutionary rate difference between perennial and annual forms in noncoding DNA, lending support to neutral causes such as the generation time, population size, and speciation rate effects to explain such rate heterogeneity. Surprisingly, the sequence from the rps3 intron had a high identity with the sequence of intron 1 from the angiosperm mitochondrial nad5 gene, suggesting a common origin of these two group IIA introns.  相似文献   

6.
Recombination between homologous loci is accompanied by formation of heteroduplexes. Repairing mismatches in heteroduplexes often leads to single nucleotide substitutions in a process known as gene conversion. Gene conversion was shown to be GC‐biased in different organisms; that is, a W(A or T)→S(G or C) substitution is more likely in this process than a S→W substitution. Here, we show that the insertion/deletion ratio for short noncoding indels that reach fixation between species is positively correlated with the recombination rate in Drosophila melanogaster, Homo sapiens, and Saccharomyces cerevisiae. This correlation is both due to an increase of the fixation rate of insertions and decrease of the fixation rate of deletions in regions of high recombination. Whole‐genome data on indel polymorphism and divergence in D. melanogaster rule out mutation biases and selection as the cause of this trend, pointing to insertion‐biased gene conversion as the most likely explanation. The bias toward insertions is the strongest for single‐nucleotide indels, and decreases with indel length. In regions of high recombination rate this bias leads to an up to ~5‐fold excess of fixed short insertions over deletions, and substantially affects the evolution of DNA segments.  相似文献   

7.
Little is known about variation of nucleotide insertion/deletions (indels) within species. In Arabidopsis thaliana, we investigated indel polymorphism patterns between two genome sequences and among 96 accessions at 1215 loci. Our study identified patterns in the variation of indel density, size, GC content and distribution, and a correlation between indels and substitutions. We found that the GC content in indel sequences was lower than that in non-indel sequences and that indels typically occur in regions with lower GC content. Patterns of indel frequency distribution among populations were more consistent with neutral expectation than substitution patterns. We also found that the local level of substitutions is positively correlated with indel density and negatively correlated with their distance to the closed indel, suggesting that indels play an important role in nucleotide variation.  相似文献   

8.
Microstructural changes such as insertions and deletions (=indels) are a major driving force in the evolution of non-coding DNA sequences. To better understand the mechanisms by which indel mutations arise, as well as the molecular evolution of non-coding regions, the number and pattern of indels and nucleotide substitutions were compared in the whole chloroplast genomes. Comparisons were made for a total of over 38 kb non-coding DNA sequences from 126 intergenic regions in two data sets representing species with different divergence times: sugarcane and maize and Oryza sativa var. indica and japonica. The main findings of this study are: (i) Approximately half of all indels are single nucleotide indels. This observation agrees with previous studies in various organisms. (ii) The distribution and number of indels was different between two data sets, and different patterns were observed for tandem repeat and non-repeat indels. (iii) Distribution pattern of tandem repeat indels showed statistically significant bias towards A/T-rich. (iv) The rate of indel mutation was estimated to be approximately 0.8 +/- 0.04 x 10(-9) per site per year, which was similar to previous estimates in other organisms. (v) The frequencies of nucleotide substitutions and indels were significantly lower in inverted repeat (IR).  相似文献   

9.
We investigated whether relative rates of divergence were correlated between the mitochondrial and chloroplast genomes as expected under lineage effects or were genome specific as expected with locus-specific effects. Five mitochondrial noncoding regions (nad1B_C, nad4exon1_2, nad7exon2_3, nad7exon3_4, and rps14-cob) for 21 samples from Lecythidaceae were sequenced. Three chloroplast regions (rpl20-5'rps12, trnS-trnG, and psbA-trnH) were sequenced to expand the taxa in an existing data set. Absolute rates of nucleotide and insertion and deletion (indel) changes were 13 times faster in the chloroplast genome than in the mitochondrial genome. Similar indel length frequency distributions for both organelles suggested that common mechanisms were responsible for generating indels. Molecular clock tests applied to phylogenetic trees estimated from mitochondrial and chloroplast sequences revealed global rate heterogeneity of nucleotide substitution. Maximum likelihood and Tajima's 1D relative rate tests show that Lecythis zabucajo exhibited a rate acceleration for both the mitochondrial and chloroplast sequences. Whereas Eschweilera romeu-cardosoi showed a significant rate slowdown for chloroplast sequences, the mitochondrial sequences for 3 Eschweilera taxa showed evidence for a rate slowdown only when compared with L. zabucajo. Significant rate heterogeneity was also observed for indel changes in the mitochondrial genome but not for the chloroplast. The lack of mitochondrial nucleotide changes for some taxa as well as chloroplast indel homoplasy may have limited the power of relative rate tests to detect rate variation. Relative ratio tests consistently indicated rate proportionality among branch lengths between the mitochondrial and chloroplast phylogenetic trees. The relative ratio tests showed that taxa possessing rate heterogeneity had parallel relative divergence rates in both mitochondrial and chloroplast sequences as expected under lineage effects. A neutral replication-dependent model of rate heterogeneity for both nucleotide and indel changes provides a simple explanation for common patterns of rate heterogeneity across the 2 organelle genomes in Lecythidaceae. The lineage effects observed here were uncoupled from annual/perennial habit because all the species from this study are perennial.  相似文献   

10.
Singh ND  Arndt PF  Petrov DA 《Genetics》2005,169(2):709-722
Mutation is the underlying force that provides the variation upon which evolutionary forces can act. It is important to understand how mutation rates vary within genomes and how the probabilities of fixation of new mutations vary as well. If substitutional processes across the genome are heterogeneous, then examining patterns of coding sequence evolution without taking these underlying variations into account may be misleading. Here we present the first rigorous test of substitution rate heterogeneity in the Drosophila melanogaster genome using almost 1500 nonfunctional fragments of the transposable element DNAREP1_DM. Not only do our analyses suggest that substitutional patterns in heterochromatic and euchromatic sequences are different, but also they provide support in favor of a recombination-associated substitutional bias toward G and C in this species. The magnitude of this bias is entirely sufficient to explain recombination-associated patterns of codon usage on the autosomes of the D. melanogaster genome. We also document a bias toward lower GC content in the pattern of small insertions and deletions (indels). In addition, the GC content of noncoding DNA in Drosophila is higher than would be predicted on the basis of the pattern of nucleotide substitutions and small indels. However, we argue that the fast turnover of noncoding sequences in Drosophila makes it difficult to assess the importance of the GC biases in nucleotide substitutions and small indels in shaping the base composition of noncoding sequences.  相似文献   

11.
Insertions and deletions (indels) are common molecular evolutionary events. However, probabilistic models for indel evolution are under-developed due to their computational complexity. Here, we introduce several improvements to indel modeling: 1) While previous models for indel evolution assumed that the rates and length distributions of insertions and deletions are equal, here we propose a richer model that explicitly distinguishes between the two; 2) we introduce numerous summary statistics that allow approximate Bayesian computation-based parameter estimation; 3) we develop a method to correct for biases introduced by alignment programs, when inferring indel parameters from empirical data sets; and 4) using a model-selection scheme, we test whether the richer model better fits biological data compared with the simpler model. Our analyses suggest that both our inference scheme and the model-selection procedure achieve high accuracy on simulated data. We further demonstrate that our proposed richer model better fits a large number of empirical data sets and that, for the majority of these data sets, the deletion rate is higher than the insertion rate.  相似文献   

12.
13.
Nucleotide insertions and deletions (indels) are responsible for gaps in the sequence alignments. Indel is one of the major sources of evolutionary change at the molecular level. We have examined the patterns of insertions and deletions in the 19 mammalian genomes, and found that deletion events are more common than insertions in the mammalian genomes. Both the number of insertions and deletions decrease rapidly when the gap length increases and single nucleotide indel is the most frequent in all indel events. The frequencies of both insertions and deletions can be described well by power law.Key Words: Insertion, deletion, gap, indel, mammalian genome.  相似文献   

14.
Insertions and deletions (indels) in protein-coding genes are important sources of genetic variation. Their role in creating new proteins may be especially important after gene duplication. However, little is known about how indels affect the divergence of duplicate genes. We here study thousands of duplicate genes in five fish (teleost) species with completely sequenced genomes. The ancestor of these species has been subject to a fish-specific genome duplication (FSGD) event that occurred approximately 350 Ma. We find that duplicate genes contain at least 25% more indels than single-copy genes. These indels accumulated preferentially in the first 40 my after the FSGD. A lack of widespread asymmetric indel accumulation indicates that both members of a duplicate gene pair typically experience relaxed selection. Strikingly, we observe a 30-80% excess of deletions over insertions that is consistent for indels of various lengths and across the five genomes. We also find that indels preferentially accumulate inside loop regions of protein secondary structure and in regions where amino acids are exposed to solvent. We show that duplicate genes with high indel density also show high DNA sequence divergence. Indel density, but not amino acid divergence, can explain a large proportion of the tertiary structure divergence between proteins encoded by duplicate genes. Our observations are consistent across all five fish species. Taken together, they suggest a general pattern of duplicate gene evolution in which indels are important driving forces of evolutionary change.  相似文献   

15.
ALMT1 gene encoding a membrane protein that facilitates an aluminium stimulated malate efflux has been characterised and mapped in wheat (Triticum aestivum L.). Here, we have identified molecular markers targeting insertion/deletion (indel) and SSR repeats within intron 3 region of the ALMT1 gene. Both the markers: ALMT1-SSR3a and ALMT1-SSR3b based on repetitive indels, exhibited complete cosegregation with Al tolerance, malate efflux, and a CAPS marker discriminating ALMT1-1 and ALMT1-2 alleles, in a doubled haploid population derived from Diamondbird (Al-tolerant)/Janz (Al-sensitive). A parental screen of 20 diverse wheat genotypes with repetitive indel markers indicated that six allele variants exist at the ALMT1SSR3 locus. Sequence analysis confirmed that these variations were due to indels, copy number of SSR repeats, and base substitution within SSR repeats. The higher level of variation in intron 3 suggests that this genomic region has been constrained by indels, SSR and single nucleotide polymorphisms. Results have proven that repetitive indel markers cosegregating with the Al tolerance locus will be useful for marker assisted selection and population and evolution studies.  相似文献   

16.
An insertion/deletion polymorphism (Ind2) in the Brassica nigra CONSTANS LIKE 1 (Bni COL1) gene was previously found to be associated with variation in flowering time. In the present study we examine the inter-specific divergence of COL1 in the family Brassicaceae. Analysis of codon substitution models did not reveal evidence of positive Darwinian selection, but comparisons of the COL1 gene in different species revealed a surprising number of indels. A total of 24 indels were found in the 650 bp of the middle variable region of the gene. This high number of indels could reflect a lack of constraint on length of this region of the protein, or the effect of positive selection. The number of indels was close to that expected in non-coding DNA, but the indels were longer in COL1 than those observed in non-coding regions. Reconstruction of indel evolution indicated that most indels resulted from deletions rather than insertions. The Ind2 indel that has shown association with flowering time in Brassica nigra exhibited a remarkable distribution in the Brassicaceae family, indicating that the polymorphism may have persisted more than ten million years. Considering presumed historic populations sizes of Brassicaceae species, such a long persistence time seems unlikely for a neutral polymorphism.  相似文献   

17.
The genome-sequencing gold rush has facilitated the use of comparative genomics to uncover patterns of genome evolution, although their causal mechanisms remain elusive. One such trend, ubiquitous to prokarya and eukarya, is the association of insertion/deletion mutations (indels) with increases in the nucleotide substitution rate extending over hundreds of base pairs. The prevailing hypothesis is that indels are themselves mutagenic agents. Here, we employ population genomics data from Escherichia coli, Saccharomyces paradoxus, and Drosophila to provide evidence suggesting that it is not the indels per se but the sequence in which indels occur that causes the accumulation of nucleotide substitutions. We found that about two-thirds of indels are closely associated with repeat sequences and that repeat sequence abundance could be used to identify regions of elevated sequence diversity, independently of indels. Moreover, the mutational signature of indel-proximal nucleotide substitutions matches that of error-prone DNA polymerases. We propose that repeat sequences promote an increased probability of replication fork arrest, causing the persistent recruitment of error-prone DNA polymerases to specific sequence regions over evolutionary time scales. Experimental measures of the mutation rates of engineered DNA sequences and analyses of experimentally obtained collections of spontaneous mutations provide molecular evidence supporting our hypothesis. This study uncovers a new role for repeat sequences in genome evolution and provides an explanation of how fine-scale sequence contextual effects influence mutation rates and thereby evolution.  相似文献   

18.
The emergence of benchtop sequencers has made clinical genetic testing using next-generation sequencing more feasible. Ion Torrent''s PGMTM is one such benchtop sequencer that shows clinical promise in detecting single nucleotide variations (SNVs) and microindel variations (indels). However, the large number of false positive indels caused by the high frequency of homopolymer sequencing errors has impeded PGMTM''s usage for clinical genetic testing. An extensive analysis of PGMTM data from the sequencing reads of the well-characterized genome of the Escherichia coli DH10B strain and sequences of the BRCA1 and BRCA2 genes from six germline samples was done. Three commonly used variant detection tools, SAMtools, Dindel, and GATK''s Unified Genotyper, all had substantial false positive rates for indels. By incorporating filters on two major measures we could dramatically improve false positive rates without sacrificing sensitivity. The two measures were: B-Allele Frequency (BAF) and VARiation of the Width of gaps and inserts (VARW) per indel position. A BAF threshold applied to indels detected by UnifiedGenotyper removed ∼99% of the indel errors detected in both the DH10B and BRCA sequences. The optimum BAF threshold for BRCA sequences was determined by requiring 100% detection sensitivity and minimum false discovery rate, using variants detected from Sanger sequencing as reference. This resulted in 15 indel errors remaining, of which 7 indel errors were removed by selecting a VARW threshold of zero. VARW specific errors increased in frequency with higher read depth in the BRCA datasets, suggesting that homopolymer-associated indel errors cannot be reduced by increasing the depth of coverage. Thus, using a VARW threshold is likely to be important in reducing indel errors from data with higher coverage. In conclusion, BAF and VARW thresholds provide simple and effective filtering criteria that can improve the specificity of indel detection in PGMTM data without compromising sensitivity.  相似文献   

19.
Brandström M  Ellegren H 《Genetics》2007,176(3):1691-1701
It is increasingly recognized that insertions and deletions (indels) are an important source of genetic as well as phenotypic divergence and diversity. We analyzed length polymorphisms identified through partial (0.25x) shotgun sequencing of three breeds of domestic chicken made by the International Chicken Polymorphism Map Consortium. A data set of 140,484 short indel polymorphisms in unique DNA was identified after filtering for microsatellite structures. There was a significant excess of tandem duplicates at indel sites, with deletions of a duplicate motif outnumbering the generation of duplicates through insertion. Indel density was lower in microchromosomes than in macrochromosomes, in the Z chromosome than in autosomes, and in 100 bp of upstream sequence, 5'-UTR, and first introns than in intergenic DNA and in other introns. Indel density was highly correlated with single nucleotide polymorphism (SNP) density. The mean density of indels in pairwise sequence comparisons was 1.9 x 10(-4) indel events/bp, approximately 5% the density of SNPs segregating in the chicken genome. The great majority of indels involved a limited number of nucleotides (median 1 bp), with A-rich motifs being overrepresented at indel sites. The overrepresentation of deletions at tandem duplicates indicates that replication slippage in duplicate sequences is a common mechanism behind indel mutation. The correlation between indel and SNP density indicates common effects of mutation and/or selection on the occurrence of indels and point mutations.  相似文献   

20.
Insertions and deletions (indels) in human genomes are associated with a wide range of phenotypes, including various clinical disorders. High-throughput, next generation sequencing (NGS) technologies enable the detection of short genetic variants, such as single nucleotide variants (SNVs) and indels. However, the variant calling accuracy for indels remains considerably lower than for SNVs. Here we present a comparative study of the performance of variant calling tools for indel calling, evaluated with a wide repertoire of NGS datasets. While there is no single optimal tool to suit all circumstances, our results demonstrate that the choice of variant calling tool greatly impacts the precision and recall of indel calling. Furthermore, to reliably detect indels, it is essential to choose NGS technologies that offer a long read length and high coverage coupled with specific variant calling tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号