首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Shi YL  Benzie IF  Buswell JA 《Life sciences》2002,71(26):3047-3057
Using the single-cell gel electrophoresis ("Comet") assay, we show that tyrosinase-generated L-DOPA oxidation products prevent H2O2-induced oxidative DNA damage in cultured tissue cells. We propose that these oxidation products trigger cellular processes that up-regulate the overall antioxidant status of the cell, and could be incorporated into treatments of pathological conditions associated with elevated oxidative DNA damage and other manifestations of increased oxidative stress.  相似文献   

2.
Trimetazidine is a well-established anti-ischemic drug, which has been used for long time in the treatment of pathological conditions related with the generation of reactive oxygen species. However, although extensively studied, its molecular mode of action remains largely unknown. In the present study, the ability of trimetazidine to protect low-density lipoproteins (LDL) from oxidation and cultured cells from H2O2-induced DNA damage was investigated. Trimetazidine, tested at concentrations 0.02 to 2.20 mM, was shown to offer significant protection to LDL exposed to three different oxidizing systems, namely copper, Fe/ascorbate, and met-myoglobin/H2O2. The oxidizability of LDL was estimated by measuring, (i) the lag period, (ii) the maximal rate of conjugated diene formation, (iii) the total amount of conjugated dienes formed, (iv) the electrophoretic migration of LDL protein in agarose gels (REM), and (v) the inactivation of the enzyme PAF-acetylhydrolase present in LDL. In addition, the presence of trimetazidine decreased considerably the DNA damage in H2O2-exposed Jurkat cells in culture. H2O2 was continuously generated by the action of glucose oxidase at a rate of 11.8 ± 1.5 μM per min (60 ng enzyme per 100 μl), and DNA damage was assessed by the single cell gel electrophoresis assay (also called comet assay). The protection offered by trimetazidine in this system (about 30% at best) was transient, indicating modification of this agent during its action. These results indicate that trimetazidine can modulate the action of oxidizing agents in different systems. Although its mode of action is not clarified, the possibility that it acts as a lipid barrier permeable transition metal chelator is considered.  相似文献   

3.
When yeast cells are exposed to sublethal concentrations of oxidants, they adapt to tolerate subsequent lethal treatments. Here, we show that this adaptation involves tolerance of oxidative damage, rather than protection of cellular constituents. o- and m-tyrosine levels are used as a sensitive measure of protein oxidative damage and we show that such damage accumulates in yeast cells exposed to H(2)O(2) at low adaptive levels. Glutathione represents one of the main cellular protections against free radical attack and has a role in adaptation to oxidative stress. Yeast mutants defective in glutathione metabolism are shown to accumulate significant levels of o- and m-tyrosine during normal aerobic growth conditions.  相似文献   

4.
The effect of vitamin C (ascorbate) on oxidative DNA damage was examined by first incubating cells with dehydroascorbate, which boosts the intracellular concentration of ascorbate, and then exposing cells to H2O2. Oxidative DNA damage was estimated by the analysis of 5-hydroxy-2′-deoxycytidine (oh5dCyd) and 8-oxo-7,8-dihydro-2′-deoxyguanosine (oxo8dGuo). The presence of a high concentration of ascorbate (30 mM), compared to the absence of ascorbate in cells, when exposed to H2O2 (200 μM), resulted in a remarkable sensitization of oh5dCyd from 2.7 ± 0.6 to 40.8 ± 6.1 lesions /106 dCyd (15-fold). In contrast, the level of oxo8dGuo increased from 8.4 ± 0.4 to 12.1 ± 0.5 lesions/106 dGuo (50%). The formation of oh5dCyd was also observed at lower concentrations of intracellular ascorbate and exogenous H2O2. Additional studies showed that replacement of H2O2 with tert-butyl hydroperoxide completely abolished damage, and that preincubation with iron and desferroxamine increased and decreased this damage, respectively. The latter studies suggest that a Fenton reaction is involved in the mechanism of damage. In conclusion, we report a novel model system in which ascorbate sensitizes H2O2-induced oxidative DNA damage in cells, leading to elevated levels of oh5dCyd and oxo8dGuo, with a strong bias toward the formation of oh5dCyd.  相似文献   

5.
Zinc oxide (ZnO) nanoparticles are finding applications in a wide range of products including cosmetics, food packaging, imaging, etc. This increases the likelihood of human exposure to these nanoparticles through dermal, inhalation and oral routes. Presently, the majority of the studies concerning ZnO nanoparticle toxicity have been conducted using in vitro systems which lack the complex cell-cell, cell-matrix interactions and hormonal effects found in the in vivo scenario. The present in vivo study in mice was aimed at investigating the oral toxicity of ZnO nanoparticles. Our results showed a significant accumulation of nanoparticles in the liver leading to cellular injury after sub-acute oral exposure of ZnO nanoparticles (300 mg/kg) for 14 consecutive days. This was evident by the elevated alanine aminotransferase (ALT) and alkaline phosphatase (ALP) serum levels and pathological lesions in the liver. ZnO nanoparticles were also found to induce oxidative stress indicated by an increase in lipid peroxidation. The DNA damage in the liver and kidney cells of mice was evaluated by the Fpg-modified Comet assay which revealed a significant (p<0.05) increase in the Fpg-specific DNA lesions in liver indicating oxidative stress as the cause of DNA damage. The TUNEL assay revealed an induction of apoptosis in the liver of mice exposed to ZnO nanoparticles compared to the control. Our results conclusively demonstrate that sub-acute oral exposure to ZnO nanoparticles in mice leads to an accumulation of nanoparticles in the liver causing oxidative stress mediated DNA damage and apoptosis. These results also suggest the need for a complete risk assessment of any new engineered nanoparticle before its arrival into the consumer market.  相似文献   

6.
The protective role of trehalose against oxidative stress caused by hydrogen peroxide in Candida albicans has been investigated in the homozygous mutant ntc1Delta/ntc1Delta, disrupted in the NTC1 gene, which encodes the neutral (cytosolic) trehalase (Ntc1p). After a severe oxidative exposure (50 mM H(2)O(2)), both parental (CAI-4) and ntc1Delta/ntc1Delta exponential-phase cells stored large amounts of intracellular trehalose. In turn, the degree of cell survival was roughly equivalent in both strains, although slightly higher in ntc1Delta/ntc1Delta cultures. The mechanism of 'adaptive tolerance' was functional in the two strains. Thus, a gently oxidative pretreatment (5 mM H(2)O(2)) increased the recovery of cellular viability when it was followed by a severe challenge (50 mM H(2)O(2)); this phenomenon was accompanied by a significant elevation of the endogenous trehalose content. Oxidative stress also induced specific activation of the antioxidant enzymes catalase and glutathione reductase upon gentle oxidative treatment (5 mM H(2)O(2)), whereas superoxide dismutase activity was only activated upon prolonged exposure. Taken together, these results strongly suggest that in C. albicans neutral trehalase activity does not play an essential role in the protective response against oxidative stress. They also suggest that a diminished Ntc1p activity might favour the growth of C. albicans cells subjected to a strong oxidative exposure.  相似文献   

7.
The localization and activities of diamine oxidase (DAO, EC 1.4.3.6) and polyamine oxidase (PAO, EC 1.4.3.4) together with polyamine levels have been investigated in developing grains of barley (Hordeum vulgare L.). DAO (pH 7.5) is present mainly in vascular tissue and its neighbouring cells, namely chalazal cells and nucellar projection, while PAO (pH 6.0) is mainly localized in the chlorenchymatous cells of the crease and at the base of the vascular tissue. Activities of both these enzymes appear to be independently-regulated, as DAO activity increased steadily throughout grain development while PAO activity was higher during the early stages of grain filling, declined thereafter and again increased towards maturity. The maximum activities of DAO coincided with the maximum content of putrescine while the levels of PAO did not seem to be directly correlated with spermidine or spermine contents. Isoelectric focusing (IEF) of DAO and PAO activities revealed the presence of bands at 30 and 45 DPA. The possible involvement of DAO and PAO in the supply of H(2)O(2) to peroxidase-catalysed reactions in the chalazal cells during grain filling is discussed.  相似文献   

8.
We studied the effect of intact red blood cells on the exogenous H2O2-mediated damage as well as on the hyperoxia-induced injury of cultured endothelial cells. Red blood cells protected endothelial cells against H2O2-mediated injury efficiently, but had no effect on the hyperoxia-induced damage. Failure of red blood cells to protect endothelial cells against hyperoxia-induced injury was not due to hemolysis. Furthermore, hyperoxia-exposed red blood cells were still capable of protecting endothelial cells against H2O2-mediated damage.  相似文献   

9.
The hypothesis that glucose deprivation-induced cytotoxicity in transformed human cells is mediated by mitochondrial O2*- and H2O2 was first tested by exposing glucose-deprived SV40-transformed human fibroblasts (GM00637G) to electron transport chain blockers (ETCBs) known to increase mitochondrial O2*- and H2O2 production (antimycin A (AntA), myxothiazol (Myx), or rotenone (Rot)). Glucose deprivation (2-8 h) in the presence of ETCBs enhanced parameters indicative of oxidative stress (i.e. GSSG and steady-state levels of oxygen-centered radicals) as well as cytotoxicity. Glucose deprivation in the presence of AntA also significantly enhanced cytotoxicity and parameters indicative of oxidative stress in several different human cancer cell lines (PC-3, DU145, MDA-MB231, and HT-29). In addition, human osteosarcoma cells lacking functional mitochondrial electron transport chains (rho0) were resistant to glucose deprivation-induced cytotoxicity and oxidative stress in the presence of AntA. In the absence of ETCBs, aminotriazole-mediated inactivation of catalase in PC-3 cells demonstrated increases in intracellular steady-state levels of H2O2 during glucose deprivation. Finally, in the absence of ETCBs, overexpression of manganese containing superoxide dismutase and/or mitochondrial targeted catalase using adenoviral vectors significantly protected PC-3 cells from toxicity and oxidative stress induced by glucose deprivation with expression of both enzymes providing greater protection than was seen with either alone. Overall, these findings strongly support the hypothesis that mitochondrial O2*- and H2O2 significantly contribute to glucose deprivation-induced cytotoxicity and metabolic oxidative stress in human cancer cells.  相似文献   

10.
Aspects of the molecular mechanism(s) of hydrogen peroxide-induced DNA damage and cell death were studied in the present investigation. Jurkat T-cells in culture were exposed either to low rates of continuously generated H(2)O(2) by the action of glucose oxidase or to a bolus addition of the same agent. In the first case, steady state conditions were prevailing, while in the latter, H(2)O(2) was removed by the cellular defense systems following first order kinetics. By using single-cell gel electrophoresis (also called comet assay), an initial increase in the formation of DNA single-strand breaks was observed in cells exposed to a bolus of 150 microM H(2)O(2). As the H(2)O(2) was exhausted, a gradual decrease in DNA damage was apparent, indicating the existence of an effective repair of single-strand breaks. Addition of 10 ng glucose oxidase in 100 microl growth medium (containing 1.5 x 10(5) cells) generated 2.0 +/- 0.2 microM H(2)O(2) per min. This treatment induced an increase in the level of single-strand breaks reaching the upper limit of detection by the methodology used and continued to be high for the following 6 h. However, when a variety of markers for apoptotic cell death (DNA cell content, DNA laddering, activation of caspases, PARP cleavage) were examined, only bolus additions of H(2)O(2) were able to induce apoptosis, while the continuous presence of this agent inhibited the execution of the apoptotic process no matter whether the inducer was H(2)O(2) itself or an anti-Fas antibody. These observations stress that, apart from the apparent genotoxic and proapoptotic effects of H(2)O(2), it can also exert antiapoptotic actions when present, even at low concentrations, during the execution of apoptosis.  相似文献   

11.
Poly(ADP)ribose polymerase (PARP) may participate in cell survival, apoptosis and development of DNA damage. We investigated the role of PARP in transformed human pleural mesothelial (MeT-5A) and alveolar epithelial (A549) cells exposed from 0.05 to 5mM hydrogen peroxide (H(2)O(2)) or crocidolite asbestos fibres (1-10 microg/cm(2)) in the presence and absence of 3-aminobenzamide (ABA), a PARP inhibitor. The cells were investigated for the development of cell injury, DNA single strand breaks and depletion of the cellular high-energy nucleotides. Compared to H(2)O(2), fibres caused a minor decrease in cell viability and effect on the cellular high-energy nucleotide depletion, and a marginal effect on the development of DNA strand breaks when assessed by the single cell gel electrophoresis (the Comet assay). Inhibition of PARP transiently protected the cells against acute H(2)O(2) related irreversible cell injury when assessed by microculture tetrazolium dye (XTT) assay and potentiated oxidant related DNA damage when assessed by the Comet assay. However, PARP inhibition had no significant effect on fibre-induced cell or DNA toxicity with the exception of one fibre concentration (2 microg/cm(2)) in MeT-5A cells. Apoptosis is often associated with PARP cleavage and caspase activation. Fibres did not cause PARP cleavage or activation of caspase 3 further confirming previous results about relatively low apoptotic potential of asbestos fibres. In conclusion, maintenance of cellular high-energy nucleotide pool and high viability of asbestos exposed cells may contribute to the survival and malignant conversion of lung cells exposed to the fibres.  相似文献   

12.
Abstract

Celecoxib is a clinically available COX-2 inhibitor that has been reported to have antineoplastic activity. It has been proposed as a preventative agent for several types of early neoplastic lesions. Earlier studies have shown that sensitivity of prostatic carcinoma (PCa) to celecoxib is associated with apoptosis; however, these studies have not demonstrated adequately whether this effect is dependent on p53 status. We studied the relation between sensitivity to celecoxib and the phenotypic p53 status of PCa cells lines, LNCaP (wild type p53), PC3 (null p53) and DU145 (mutated p53). Cellular growth was assessed at 24, 48, 72 and 96 h after celecoxib treatment at concentrations of 0, 10, 30, 50, 70 and 100 μM using an MTT assay. Cellular proliferation (Ki-67 expression) was determined by immunocytochemistry. Phenotypic expression of p53 was analyzed by western blotting. The effects of celecoxib on cellular growth and its association with p53 were assessed after down-regulation of p53 using synthetic interfering RNAs (siRNA) in LNCaP cells. Expression of p53 and COX-2 at mRNA levels was assessed by quantitative real time polymerase reaction (qRT-PCR). We found that celecoxib inhibited cellular growth and proliferation in a dose-dependent manner in all three cell lines; LNCaP cells with a native p53 were the most sensitive to celecoxib. We observed a down- regulation effect on p53 in LNCaP cells exposed to ≥ 30 μM celecoxib for 72 h, but found no significant changes in the p53 levels of DU145 cells, which have a mutated p53. Reduced COX-2 expression was found with decreased p53 in LNCaP and PC-3 cells that were exposed to ≥ 20 μM of celecoxib for 72 h, but COX-2 expression was increased in DU145 cells. All three cell lines demonstrated pan-cytotoxicity when exposed to 100 μM celecoxib. When p53 expression was inhibited using siRNA in LNCaP cells, the inhibitory effects on cellular growth usually exerted by celecoxib were not changed significantly. Celecoxib reduces the growth of prostate cancer cell lines in part by decreasing proliferation, which suggests that the inhibition of growth of LNCaP cells by celecoxib is independent of normal levels of native p53.  相似文献   

13.
Poly(ADP-ribose) in the cellular response to DNA damage   总被引:32,自引:0,他引:32  
Poly(ADP-ribose) polymerase is a chromatin-bound enzyme which, on activation by DNA strand breaks, catalyzes the successive transfer of ADP-ribose units from NAD to nuclear proteins. Poly(ADP-ribose) synthesis is stimulated by DNA strand breaks, and the polymer may alter the structure and/or function of chromosomal proteins to facilitate the DNA repair process. Electronmicroscopic studies show that poly(ADP-ribose) unwinds the tightly packed nucleosomal structure of isolated chromatin. Recent studies also show that the presence of poly(ADP-ribose) enhances the activity of DNA ligase. This may increase the capacity of the cell to complete DNA repair. Inhibitors of poly(ADP-ribose) polymerase or deficiencies of the substrate, NAD, lead to retardation of the DNA repair process. When DNA strand breaks are extensive or when breaks fail to be repaired, the stimulus for activation of poly(ADP-ribose) persists and the activated enzyme is capable of totally consuming cellular pools of NAD. Depletion of NAD and consequent lowering of cellular ATP pools, due to activation of poly(ADP-ribose) polymerase, may account for rapid cell death before DNA repair takes place and before the genetic effects of DNA damage become manifest.  相似文献   

14.
We have investigated to determine the source of ceramide produced during the genotoxic apoptosis induced by the anti-cancer drug, camptothecin (CPT), in human prostate cancer LNCaP cells by measuring the activities of acid and neutral sphingomyelinases (SMase) and by using fumonisinB(1) (FB(1)), the inhibitor of ceramide synthase involving de novo synthesis of ceramide. In contrast to time-dependent elevation of intracellular ceramide level after CPT-treatment, the activities of both SMases were not increased but rather decreased. Instead, pretreatment for 3 h with FB(1) (100 microM), an inhibitor of ceramide synthase, almost completely abrogated ceramide accumulation observed in cells exposed to CPT for 18 h. These results indicate that ceramide is produced via de novo pathway but not via sphingomyelin hydrolysis pathway. Furthermore, it is to be noted that the pretreatment with FB(1) did not affect the CPT-induced apoptosis as assessed by DNA ladder formation, Hoechst 33342 staining, flow cytometry, and mitochondrial potential thereby leading us to propose that ceramide accumulation is independent of apoptosis in this system.  相似文献   

15.
Histone proteins are involved in compaction of DNA and the protection of cells from oxygen toxicity. However, several studies have demonstrated that the metal-binding histone reacts with H(2)O(2), leading to oxidative damage to a nucleobase. We investigated whether histone can accelerate oxidative DNA damage, using a minimal model for the N-terminal tail of histone H4, CH(3)CO-AKRHRK-CONH(2), which has a metal-binding site. This histone peptide enhanced DNA damage induced by H(2)O(2) and Cu(II), especially at cytosine residues, and induced additional DNA cleavage at the 5'-guanine of GGG sequences. The peptide also enhanced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and ESR spin-trapping signal from H(2)O(2) and Cu(II). Cyclic redox reactions involving histone-bound Cu(II) and H(2)O(2), may give rise to multiple production of radicals leading to multiple hits in DNA. It is noteworthy that the histone H4 peptide with specific sequence AKRHRK can cause DNA damage rather than protection under metal-overloaded condition.  相似文献   

16.
Hydroxytyrosol (2-(3′,4′-dihydroxyphenyl)ethanol; HT), the most active ortho-diphenolic compound, present either in free or esterified form in extravirgin olive oil, is extensively metabolized in vivo mainly to O-methylated, O-sulfated and glucuronide metabolites. We investigated the capacity of three glucuronide metabolites of HT, 3′-O-β-d-glucuronide and 4′-O-β-d-glucuronide derivatives and 2-(3′,4′-dihydroxyphenyl)ethanol-1-O-β-d-glucuronide, in comparison with the parent compound, to inhibit H2O2 induced oxidative damage and cell death in LLC-PK1 cells, a porcine kidney epithelial cell line. H2O2 treatment exerted a toxic effect inducing cell death, interacting selectively within the pro-death extracellular-signal relate kinase (ERK 1/2) and the pro-survival Akt/PKB signaling pathways. It also produced direct oxidative damage initiating the membrane lipid peroxidation process. None of the tested glucuronides exhibited any protection against the loss in renal cell viability. They also failed to prevent the changes in the phosphorylation states of ERK and Akt, probably reflecting their inability to enter the cells, while HT was highly effective. Notably, pretreatment with glucuronides exerted a protective effect at the highest concentration tested against membrane oxidative damage, comparable to that of HT: the formation of malondialdehyde, fatty acid hydroperoxides and 7-ketocholesterol was significantly inhibited.  相似文献   

17.
18.
Cells derived from individuals with ataxia telangiectasia (AT) exhibit increased sensitivity to ionizing radiation and certain drugs (e.g., bleomycin, neocarzinostatin, and etoposide) as evidenced by decreased survival and increased chromosome aberrations at mitosis when compared with normal cell lines. To understand better the basis of this sensitivity, three AT and two normal lymphoblastoid cell lines were fractionated into cell cycle phase-enriched populations by centrifugal elutriation and then examined for their survival and their relative initial levels of DNA damage (neutral DNA filter elution) and chromosome damage (premature chromosome condensation). AT cells exhibited decreased levels of survival in all phases of the cell cycle; however, AT cells in early G1 phase were especially sensitive compared with normal cells in G1 phase. While AT and normal cells exhibited similar levels of initial DNA double-strand breaks in exponential populations as well as throughout the cell cycle, AT cells showed nearly twofold higher initial levels of chromosome damage than normal control cells in G1 and G2 phase. These results suggest that there is a higher rate of conversion of DNA double-strand breaks into chromosome breaks in AT cells, perhaps due to a difference in chromatin organization or stability. Thus one determining component of cellular radiosensitivity might include chromatin structure.  相似文献   

19.
Soybean cell suspension cultures have been used to investigate the role of the elevation of the cytosolic Ca(2+) concentration in beta-glucan elicitors-induced defence responses, such as H(2)O(2) and phytoalexin production. The intracellular Ca(2+) concentration was monitored in transgenic cells expressing the Ca(2+)-sensing aequorin. Two lines of evidence showed that a transient increase of the cytosolic Ca(2+) concentration is not necessarily involved in the induction of H(2)O(2) generation: (i) a Bradyrhizobium japonicum cyclic beta-glucan induced the H(2)O(2) burst without increasing the cytosolic Ca(2+) concentration; (ii) two ion channel blockers (anthracene-9-carboxylate, A9C; 5-nitro-2-(3-phenylpropylamino)-benzoate, NPPB) could not prevent a Phytophthora soja beta-glucan elicitor-induced H(2)O(2) synthesis but did prevent a cytosolic Ca(2+) concentration increase. Moreover, A9C and NPPB inhibited P. sojae beta-glucan-elicited defence-related gene inductions as well as the inducible accumulation of phytoalexins, suggesting that the P. sojae beta-glucan-induced transient cytosolic Ca(2+) increase is not necessary for the elicitation of H(2)O(2) production but is very likely required for phytoalexin synthesis.  相似文献   

20.
Apoptosis was studied under conditions that mimic the steady state of H(2)O(2) in vivo. This is at variance with previous studies involving a bolus addition of H(2)O(2), a procedure that disrupts the cellular homeostasis. The results allowed us to define three phases for H(2)O(2)-induced apoptosis in Jurkat T-cells with reference to cytosolic steady state concentrations of H(2)O(2) [(H(2)O(2))(ss)]: (H(2)O(2))(ss) values below 0.7 microM elicited no effects; (H(2)O(2))(ss) approximately 0.7-3 microM induced apoptosis; and (H(2)O(2))(ss) > 3 microM yielded no additional apoptosis and a gradual shift towards necrosis as the mode of cell death were observed. H(2)O(2)-induced apoptosis was not affected by either BCNU, an inhibitor of glutathione reductase, or diamide, a compound that reacts both with low-molecular weight and protein thiols, or selenols. Glutathione depletion, accomplished by incubating cells either with buthionine sulfoximine or in cystine-free medium, rendered cells more sensitive to H(2)O(2)-induced apoptosis, but did not change the threshold and saturating concentrations of H(2)O(2) that induced apoptosis. Two unrelated metal chelators, desferrioxamine and dipyridyl, strongly protected against H(2)O(2)-induced apoptosis. It may be concluded that, under conditions of H(2)O(2) delivery that mimic in vivo situations, the oxidative event that triggers the induction of apoptosis by H(2)O(2) is a Fenton-type reaction and is independent of the thiol or selenium states of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号